Онлайн библиотека PLAM.RU


  • Точка опоры
  • Жорж-Луи Леклер граф де Бюффон и первая настоящая гипотеза космогонии
  • Небулярная гипотеза Иммануила Канта
  • Великолепная пятерка
  • Пьер-Симон Лаплас и седьмое примечание к «Изложению системы мира»
  • «Изложение системы мира» — популярное произведение без единой формулы и без единого чертежа
  • Вселенную конструируют философы

    Точка опоры



    «Дайте мне точку опоры, и я переверну мир!» Кто это хвастался? Вы, конечно, знаете — Архимед. Мир он не перевернул, но мысль была правильной. Во всяком революционном перевороте нужна надежная основа, на которую можно с уверенностью опереться. Так и философам после критики библейской легенды о сотворении понадобилось заменить бога не менее надежной творческой силой.

    Картина мира, построенная французским философом XVII века Рене Декартом, выросла тоже на фундаменте учения Н. Коперника. Был в ней и бог. Но уже не такой всемогущий. Да, бог создал материю, говорил философ, бог снабдил ее движением, дал ей «первый толчок». Но дальше солнечная система развивалась естественным путем, обусловленным свойствами материи и движением ее разнородных частиц. Теория Коперника гласит, что все планеты, все небесные тела обращаются вокруг Солнца? Прекрасно! Р. Декарт делает обобщенную посылку-гипотезу: главной формой движения космической материи является вихревое движение ее простейших частиц. И сразу возникает красивая и убедительная картина образования мира. Позвольте, а как же бог? А что, создав материю и толкнув ее, бог свое дело сделал, как говорится: «мавр сделал свое дело, мавр может уйти». В вихревом кругообразном движении частицы сами, соприкасаясь, взаимодействуют, слипаются, образуют сначала сгустки, которые потом превращаются в звезды и планеты. Заметьте, частицы соприкасаются, иначе как же они могли бы передать свое воздействие друг другу. Наглядной получилась картина Р. Декарта и убедительной. Жаль только, что никакие количественные соотношения не были в ней выведены. Да и сама философия, несмотря на намерение поставить все на надежную математическую основу, была довольно противоречивой. Блистательным оказался только метод. Индуктивному методу исследования природы английского ученого Френсиса Бэкона Р. Декарт противопоставил свой. Он был категорически против веры «в шаткое свидетельство чувств» и в «обманчивое суждение беспорядочного воображения». Нет, нет, только выведение следствия путем строгих математических и логических заключений из общих посылок, не оставляющих сомнений в мощи порождающего их разума. Только дедуктивный метод, по мнению Р. Декарта, был надежным помощником настоящего философа-естествоиспытателя.

    Вслед за Р. Декартом вторым крупным представителем механического материализма в естествознании XVII–XVIII веков должен идти И. Ньютон, хотя космогонические воззрения сэра Исаака особой оригинальностью не отличались.

    Результаты своих работ в области механики И. Ньютон изложил в трактате «Математические начала натуральной философии». Этот труд был написан, кстати, тоже весьма сложным языком. Но в нем И. Ньютон показал огромное теоретическое и прикладное значение выведенных им законов. Трактат содержит решение целого ряда важнейших практических задач механики и астрономии, но еще важнее то, что «Начала» явились глубоким обобщением всей прошлой и современной И. Ньютону физики.

    Сегодня мы настолько привыкли к классической формулировке, гласящей, что «любые две материальные частицы притягивают друг друга с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними», что это кажется даже естественным. Таким же естественным, как то, что Земля — шар и что этот шар вращается вокруг своей оси и облетает Солнце.



    Закону Ньютона веришь! Конечно, законам верить надо. Во-первых, они несут в себе опыт поколений. Во-вторых, бывают обычно так красивы, так рафинированы, что завораживают. И наконец, верить куда проще, чем понимать…

    Между тем привычка принимать любое утверждение науки на веру приводит в определенной степени к догматизму. С ньютоновским мировоззрением дела обстояли значительно сложнее, чем, например, с картиной мира Р. Декарта. Посудите сами: в трудах Р. Декарта пространство было заполненным тонкой материей, в которой бушевали вихри, передающие усилие от одной частицы к другой, от другой к третьей. Это было так же понятно, как толчок в бок. В работах И. Ньютона пространство было пустым и силы тяготения действовали на расстоянии. Это вызывало недоумение. Ведь даже господу богу, чтобы поразить человека, надо было послать в него молнию. В теории И. Ньютона людям XVII столетия не хватало материального носителя силы. Кроме того, вселенная сэра Исаака была вечной и неизменной. Даже с позиций просвещенной современности идея Р. Декарта о развитии вселенной с помощью внутренних сил природы была куда прогрессивнее ньютоновского консерватизма. И наконец, изящный язык, которым были написаны работы французского ученого, ни в какое сравнение не шел с тяжеловесной латынью его английского коллеги. Все это приводило к тому, что, склоняя головы перед математической точностью «Начал», философы предпочитали более расплывчатую французскую концепцию. Все с благоговением соглашались, что И. Ньютон научил людей вычислять движения небесных тел. Но Р. Декарт давал возможность размышлять…

    Конечно, с позиций дня сегодняшнего можно предложить делать и то и другое одновременно и вместе. Но не следует забывать, что для того, чтобы теория овладела массами, ее следует сначала сделать доступной массам. Принципы И. Ньютона нуждались в популяризации.

    По прошествии менее чем десяти лет после кончины английского физика его взгляды «переплыли Ла-Манш». Вышла в свет работа «Элементы философии Ньютона», написанная на хорошо известном европейскому читателю французском языке. Автором книги был Ф. Вольтер. Его сочинение сыграло огромную роль в популяризации новых идей. И примерно с середины XVIII столетия ньютоновские принципы и ньютоновская механика стали безраздельно господствовать в европейской науке. Они явились той «точкой опоры», на которую можно было опереться, чтобы «перевернуть мир».

    Благодаря широкому распространению взглядов И. Ньютона человечество созрело для новой гипотезы. Теперь должен был найтись ее творец.

    Жорж-Луи Леклер граф де Бюффон и первая настоящая гипотеза космогонии

    Первая гипотеза, описывающая сотворение Земли и планет на основании законов Ньютона и без участия бога, была детищем француза. И не случайно. Именно во Франции XVIII века, бурлящей ненавистью к королю и дворянам, в обстановке приближающейся революции возникает интерес к космогонии, отвергающей вмешательство высших сил.

    И вот перед нами первый создатель космогонической гипотезы Жорж-Луи Леклер граф де Бюффон. Высокий рост, атлетическое телосложение — куда ни кинь, видный и представительный мужчина. Небольшой белый парик под треугольной шляпой, камзол-жостокар с широкими манжетами. На плечах темный плащ, прикрывающий достаточно длинную шпагу: парижские улицы не безопасны ночью. Шелковые чулки и туфли на красных каблуках, какие еще носят щеголи, дополняют его костюм. Бюффону 33 года. Он еще не женат. Ни одной из его многочисленных подруг пока не удалось окончательно пленить сердце атлета. Увы, его больше привлекает «Теория ракет и способы их усовершенствования», которыми он как раз сейчас занимается, и почти оконченный перевод «Метода флюксий» несравненного И. Ньютона. Впрочем…

    Полные губы его шевелятся. Остановившись на пороге своего дома, он говорит слуге, что отправляется в медицинскую академию на бульвар Сен-Жермен. Это на ночь-то глядя?

    Вот он шагает по мостовой той улицы, которая в будущем станет носить его имя. Красные каблуки прочно ступают на землю, своей шляпой он задевает звезды. Его мысли заняты движениями планет. Он словно перелистывает снова и снова «Начала» И. Ньютона, размышляя о «силе импульса», то есть того толчка, который заставил планеты двигаться вокруг Солнца. У И. Ньютона эта сила — бог. А что думает Ж. Бюффон? Давайте застенографируем часть его размышлений: «…сила импульса была, конечно, сообщена светилам рукою бога, когда он пускал в ход вселенную…» В этих словах пока нет ничего нового. Так писал Р. Декарт. Так писал и говорил И. Ньютон. А вот уже кое-что новенькое: «…но поскольку физике следует по мере возможности воздерживаться от обращения к причинам, находящимся вне природы, мне кажется, что эту силу импульса в солнечной системе можно объяснить довольно правдоподобно, и найти причину, эффект которой согласуется с правилами механики, и которая не удаляется от идей, относящихся к изменениям и переворотам, могущим и долженствующим происходить во вселенной».

    Ну как? Немного старомодно по форме, но как свежо по содержанию. Не забывайте, что это всего лишь середина XVIII века.

    В его мыслях еще очень осторожное, но совершенно недвусмысленное стремление отделить теологию от механики или «басню от физики», как говаривал он сам временами. Позже он так и напишет об этом в своем сочинении. А пока… Он неторопливо шествует по улицам старого латинского квартала — квартала ученых и студентов. И думает о том, что каждый метр в окружении учеников — это такая же система, как Солнце со своими планетами, связанные сложными законами взаимного тяготения…

    Жорж-Луи шагает мимо церкви, покровительницы города святой Женевьевы. Через несколько лет на ее месте повелением короля Людовика XV будет заложено колоссальное здание Пантеона, где упокоится прах многих выдающихся людей французской науки. Люди смертны, что делать.

    Когда-то считалось, что смерть тиранам предвещали кометы. Во всяком случае, хроники полны описаниями их появления в роковой для правителя год. Ну а если кометы не появлялись, а король все-таки умирал? Небесное тело изобреталось хроникером. Смешные люди — тираны! Они часто до кончины уверены, что качественно отличны от прочих смертных. Ж. Бюффон улыбается. Он вспоминает страницы придворной хроники, написанные всего пятьдесят лет назад. В 1680 году небо Земли посетила «новая комета, какой еще не видели в новейшие времена… В городе царит большой страх: робкие люди видят в этом светиле предзнаменование нового потопа, потому что, как они утверждают, наводнение всегда предвещается огнем».

    Комета 1680 года! Она прошла, по расчетам англичанина Э. Галлея, друга И. Ньютона, так близко возле Солнца, что едва не задела великое светило. И хорошо, что не задела. Согласно общему мнению кометы — массивные тела, блуждающие в космосе. Опасные встречи с ними уже не раз предсказывались и Солнцу и Земле.



    Почтенные метры Сорбонны собирались, чтобы обсудить опасность, которую несло блуждающее небесное тело. Той самой знаменитой Сорбонны, мимо которой сейчас шел Ж. Бюффон и где несколько лет спустя будет осужден его трактат, как еретический и противоречащий священному писанию. Но пока это все впереди. Пока Жорж-Луи об этом не знает. Он спокойно пересекает бульвар Сен-Мишель — «Бульмиш», как по сей день называют его веселые парижские студенты. Путь его лежит мимо старой церкви святого Сульпиция к рынку Сен-Жермен…

    Уже поздно. Но возле устричных лотков воткнуты факелы, и торговцы ловко вскрывают раковины кривыми ножами. Привезли свежий товар. Тянет дымом жаровен. «Каштаны, каштаны, сладкие жареные каштаны». А вон, возле длинного прилавка, тележка на высоких колесах с дынями. Шлеп, шлеп — золотисто-желтые плоды перелетают из ладоней в ладони. Огородники разгружают товар. Ночь коротка. Скоро наступит новый день, и Париж потребует пищи. Много пищи: много фруктов, овощей, мяса и хлеба. Боже милостивый, как много надо людям!.. Один из огородников стоит на повозке и кидает дыни. Другой ловит их и укладывает в пирамиду. Гора растет. Что им до комет? Они вряд ли даже слыхали о грозных предзнаменованиях. Но если это кара божья, то разве справедливо, что часть его детей остаются в неведенье?

    Ж. Бюффон вспоминает диспут, на который он был приглашен во время своего пребывания в Лондоне. Один из спорящих — астроном пугал своего противника последствиями встречи кометы с Землей.

    «Грозное небесное тело наскочит на Землю сзади, замедлит движение планеты и изменит ее путь. Земля подойдет близко к Солнцу и загорится… Пройдет много лет, прежде чем возрожденная огнем, сделается она вновь обитаемой по воле божьей. И наступит тогда на ней царство святых. Через тысячу лет это царство окончится и Земля столкнется еще с одной последней кометой. Теперь орбита ее растянется, и, обратившись сама в комету, Земля вновь станет безжизненной».

    Какой великолепный салат из астрономии, мистики и теологии! Впрочем, П. Мопертюи — с Ж. Бюффоном они приятели — тоже считает, что, ежели бы Земля встретилась с кометой, удар переместил бы полюса на экватор. А уж физика и астронома П. Мопертюи не заподозришь в склонности к мистицизму.

    Но вернемся к мысли о встрече кометы с Солнцем. Р-раз! Один из огородников промахнулся и не поймал брошенной дыни. Круглый плод звучно врезался в дыню, уложенную на верхушке пирамиды, и расколол ее. Брызги спелого сока и семечки заставили Бюффона отскочить в сторону. Торговцы захохотали.

    Небольшой инцидент перебил мысли. Ж. Бюффон миновал рынок и зашагал по бульвару Сен-Жермен к намеченной цели. Да, так о чем же он думал? О Солнце и встрече его с кометой? Проклятая дыня! Хотя, а почему бы и комете не исторгнуть из великого светила часть вещества? И почему бы из этого вещества не образоваться планетам? Прекрасная идея! А эпизод с дыней придал ей наглядность и убедительность. Буйное воображение снабжает картину подробностями.

    Пройдет время, и он опишет, как подлетает к Солнцу огромная комета, как она на «бреющем» полете едва касается раскаленной поверхности светила и сшибает с него часть вещества. Гигантский язык солнечной материи вытягивается в сторону. Постепенно, под действием сил притяжения в соответствии с законом сэра Исаака Ньютона, в струе материи образуются сгущения и разрежения. Она делится на части. И из каждой части начинает образовываться планета. Вращение придает им форму шара. Постепенно остывая, планеты покрываются стекловидной корочкой. То же претерпевает и Земля. Внутри у нее образуется ядро. Конденсируются пары атмосферы и выпадают сильными ливнями. Всю поверхность покрывает горячий, клокочущий океан. Волны его размывают, разламывают хрупкую кору, перемалывают ее в песок… Как хорошо все получается в эмоционально нарисованном «действии»! Даже одинаковое направление движения всех планет нашло свое объяснение, даже примерно равный наклон орбит. Когда это могло случиться? Согласно библейской хронологии мир был сотворен за 5508 лет до рождения Христа. Нет, с таким сроком Бюффон согласиться не может. Процесс формирования планеты должен занимать, по крайней мере… десятки тысячелетий!

    Ах, Жорж-Луи Леклер граф де Бюффон! На что поднимаете вы руку, мсье? Осиное гнездо католической церкви загудело, зажужжало. Вот мы его!!!

    Кто знает, не преследования ли служителей божьих привлекли к его гипотезе внимание и симпатии читателей? За короткое время приобрела она широчайшую известность, хотя еще при жизни ее творца у астрономов возникли первые сомнения. Виновницей этих сомнений оказалась та же комета Галлея. В 1759 году она снова появилась на небосклонах Земли. Но движение ее, по расчетам астрономов, испытало немало изменений под действием сил притяжения Сатурна и Юпитера. Сами же планеты остались на тех же предначертанных орбитах. А раз так, то масса кометы не могла идти ни в какое сравнение с массой Солнца. Значит, и остальные кометы нельзя было считать массивными телами, способными при столкновении исторгнуть часть солнечной материи. Может быть, имеет смысл предположить какой-нибудь другой путь образования планетной системы?

    Небулярная гипотеза Иммануила Канта

    В предисловии к самому первому изданию своих «Начал» И. Ньютон писал, что он видит цель физики в том, чтобы «по явлениям движения распознавать силы природы, а затем по этим силам изъяснять остальные явления». Прекрасная программа действий! Может быть, изучив движения небесных тел, удастся, в конце концов, прийти и к расшифровке главного вопроса о происхождении Земли, солнечной системы и, наконец, мира?

    В 1755 году в Кенигсберге появляется безымянная работа «Общая естественная история и теория неба», снабженная подзаголовком: «Опыт об устройстве и механическом происхождении всего мироздания на основании ньютоновских законов». Это уже определенный прогресс по сравнению с гипотезой Ж. Бюффона, использовавшей только идею притяжения. Кроме того, у Ж. Бюффона причина, обусловившая возникновение солнечной системы, диктовалась случайностью — катастрофой в результате столкновения двух небесных тел. Не случись ее, Земли могло бы и не существовать.

    В новой работе случайности исключались. Подобно древнегреческим философам, автор считал, что мир родился из хаоса огромного облака пылевых частиц, беспорядочно двигающихся в разных направлениях. Сталкиваясь друг с другом, притягиваясь, они изменяют направления своих движений, объединяются в более крупные сгустки. Под действием сил притяжения большинство из них устремляются к центру, где начинает расти ядро туманности — будущее Солнце. Из других сгустков, получивших орбитальное движение, формируются планеты.

    Так писал Иммануил Кант! Именно он — будущий философ-идеалист — был анонимным автором этой насквозь материалистической гипотезы. Пораженный до глубины души четкостью и математической строгостью ньютоновских законов, И. Кант хотел во что бы то ни стало применить их к тому, чего не сделал сам И. Ньютон, — объяснить механизм творения. Если закон всемирного тяготения позволяет объяснить состояние планетной системы на сегодня, он должен объяснить и ее происхождение, говорил он себе.

    Темными осенними ночами молодой, тогда еще совсем молодой, философ часто подолгу смотрел на небо. И в тумане полосы Млечного Пути виделись ему другие планетные системы и другие Солнца. Нет сомнения, небесные тела, входящие в единую систему, должны быть объединены и общностью происхождения. Земля и Луна, Юпитер и все остальные тела образовались одновременно со своим центральным светилом. Иначе как объяснить, что, разделенные пустыми просторами космоса, не связанные друг с другом ничем, кроме сил взаимного притяжения, обращаются они от века в ту же сторону, в которую кружится вокруг своей оси и само Солнце.



    Но если первозданное облако состояло из частиц, хаотически двигавшихся в разные стороны, то как заставить их начать кружиться в одном направлении? Из законов И. Ньютона, известных И. Канту, такого упорядочивания движений не получалось. И тогда на помощь математике пришла философия. Он вводит в дополнение к ньютоновым силам притяжения силы взаимного отталкивания. Именно они должны помочь сначала частицам, а потом и образовавшимся телам приобрести «свободное круговое движение».

    Вы, пожалуй, спросите: откуда выкопал он эти силы? Световое давление во времена И. Канта открыто еще не было, силы электрического отталкивания приспособить для космогонических целей тоже еще никому в голову не приходило. Какова же природа этого отталкивания?

    Скорее всего мысль о них возникла у И. Канта из древней как мир философской идеи диалектики о взаимодействии противоположностей, как о всеобщем законе движения мира. Ведь, и занимаясь естествознанием, И. Кант ни на мгновение не переставал быть философом. Правда, биографы пишут, что некоторое время, еще будучи студентом в университете, он питал склонность к точным наукам. Но тут же оговариваются, что в значительной степени это была просто реакция «на избыток религиозного образования в школе». В двадцать два года он даже написал реферат: «Мысли об истинном измерении живых сил», в котором подробно разобрал спор Р. Декарта с Г. Лейбницем. Работа студента философского факультета была написана живо, носила явные признаки самостоятельности мышления, но… не более. И вот после окончания университета и девяти лет гувернерства в частных домах — роли, занимающей промежуточное положение между лакеем и бедным родственником-приживалой, — он пишет ряд блестящих статей о космогонических проблемах. Мало того, что он рассматривает интересующие его вопросы с чисто материалистических позиций, он лишает бога права «первого толчка» и вводит принцип развития космоса. Того самого космоса, который согласно священному писанию сотворен богом и неизменен от века.

    Для XVIII века это был смелый вывод. В своей работе «Анти-Дюринг» Ф. Энгельс высоко оценил космогонию И. Канта. «Кантова теория возникновения всех теперешних небесных тел из вращающихся туманных масс была величайшим завоеванием астрономии со времени Н. Коперника. Впервые было поколеблено представление, что природа не имеет никакой истории во времени… Было, конечно, очевидно для всех, что природа находится в постоянном движении, но это движение представлялось как непрестанное повторение одних и тех же вопросов. В этом представлении, вполне соответствовавшем метафизическому способу мышления, И. Кант пробил первую брешь…»

    К сожалению, современники знали И. Канта лишь как философа — автора критического метода и создателя новой критической философии. Натурфилософские сочинения докритического периода никто никогда не вспоминал. Да и сам он в дальнейшем отошел от позиций материализма. «Основные черты философии Канта есть примирение материализма и идеализма, компромисс между тем и другим, сочетание в одной системе разнородных, противоположных философских направлений», — писал В. И. Ленин в работе «Материализм и эмпириокритицизм».

    Пройдут годы. Критики разберут гипотезу немецкого философа с физико-математических позиций и докажут, как дважды два, что никакие внутренние силы не способны привести во вращение всю систему туманности. Точно так же, как не удастся никому, схватив себя за волосы, перенести через реку.

    В чем же тогда ценность этой не замеченной в свое время гипотезы и почему мы, спустя столько лет, не забыли о ней, как забыли о многих иных, стоящих куда ближе к истине сегодняшнего дня?

    Можно, конечно, говорить о том, что гипотеза И. Канта — первая среди обширного класса космогонических гипотез происхождения небесных тел из туманностей. Вслед за Кантовой, все они получили общее название «небулярных», от латинского слова «nebula» — туманность. Но не это главное. Нет! Гораздо важнее то, что И. Кант сознательно рассматривал развитие мира как результат противоположных и противоречивых сил притяжения и отталкивания и возвел этот метод в принцип! О том, что развитие мира происходит в результате взаимодействия противоположностей, люди смутно догадывались еще в древнейшие времена, положив это условие в основы диалектики. Но только после И. Канта взаимодействие противоположных начал планомерно разрабатывается последующими философами как всеобщая закономерность развития бытия и познания, пока не получает окончательного выражения в виде закона единства и борьбы противоположностей в работах К. Маркса, Ф. Энгельса и В. Ленина.

    Сегодня исследование любого объекта — от элементарных частиц и разлетающихся галактик до биологических и социальных законов, которым подчиняется человек и общество, означает, прежде всего, проникновение в противоречивую природу этого объекта или явления. И чем глубже это проникновение, тем вернее теоретическое понимание исследуемых процессов. Тут и дуализм элементарных частиц, проявляющих себя как единство вещества и поля, и силы гравитационного притяжения, и силы электрического и магнитного отталкивания, и все это имеет место в космосе, все формирует галактики.

    Подобные примеры из любой области изучения неживой и живой природы может найти при желании сам читатель, дав себе труд проанализировать развитие любой системы из окружающей его действительности.

    Великолепная пятерка

    В науке нельзя все время делать открытия. Время от времени ученые должны останавливаться, осматриваться вокруг, учиться, накапливать знания, чтобы потом снова устремляться вперед, в неизвестное.

    Когда физики, астрономы и математики, а в «добрые старые времена» все указанные ипостаси умудрялись уживаться в одном лице, как следует вчитались в несравненные ньютоновские «Начала», они обнаружили немало неожиданного. В этой поразительной книге при всей ее целостности и законченности оказалась масса незавершенных идей, множество задач, одни из которых были сформулированы и полностью решены, другие решены приближенно, а третьи вообще остались лишь с намеченным путем для решений. Вот где было просторно последователям.

    Например, закон всемирного тяготения позволил И. Ньютону сформулировать и полностью решить «задачу двух тел», как стали называть математический расчет движения двух притягивающихся материальных частиц. Эта задача была особенно важна для астрономии, поскольку позволяла вычислять, к примеру, движение Луны в поле земного тяготения или движения любой планеты в зависимости от притяжения Солнца.

    Решение «задачи двух тел» позволило И. Ньютону подтвердить справедливость двух первых законов И. Кеплера и внести уточнение в третий закон. Однако решение уравнений движения отдельной планеты в поле тяготения Солнца без учета сил тяготения остальных небесных тел оказывалось справедливым лишь для коротких промежутков времени. От года к году к такому результату добавлялись ошибки из-за неучтенных малых сил взаимного тяготения других членов солнечного семейства. Движения планет отклонялись от кеплеровских эллиптических орбит, и таблицы приходилось пересматривать и вычислять заново. Нет, «задача двух тел» оказывалась слишком приближенной математической моделью.



    В начале XVIII века астрономы насчитывали в солнечном семействе 18 законных членов. Прежде всего это было само Солнце, затем 6 планет: Меркурий, Венера, Земля, Марс, Юпитер и Сатурн, а также 10 планетных спутников: Луна, 4 спутника Юпитера и 5 спутников Сатурна. Последним самостоятельным членом солнечной системы считалось кольцо Сатурна, природа которого была в те времена астрономам неизвестна. Вся эта компания, связанная между собой узами тяготения, которые определяли их взаимные перемещения, в общем, была уже довольно неплохо изучена человечеством. Для окончательной уверенности в беспредельном могуществе математики как метода познания и физической теории, как библии этого метода оставалось только решить задачу:

    «Дано — 18 небесных тел, положения и движения которых в данный момент известны.

    Требуется — определить с помощью математики из их взаимных притяжений положения и движения каждого из них для любого заданного момента и показать, что результаты вычислений согласуются с наблюдениями».

    Все! Решив оную задачу, человечество могло бы почить на лаврах, переписав лик бога Саваофа на лик И. Ньютона. Однако представляет ли себе читатель, что значит достаточно строго решить задачу движения 18 взаимосвязанных небесных тел? Давайте попробуем только перечислить некоторые трудности, встающие на пути такого решения.

    Итак, 18 членов солнечной системы. Каждое из них, если считать его абсолютно твердым, то есть не подверженным никаким деформациям, обладает степенями свободы. Это, конечно, понятно — ведь они могут не только двигаться в трех различных направлениях, но и вращаться вокруг трех взаимно перпендикулярных осей. Следовательно, для определения положения тела в пространстве мы должны в каждый момент времени задавать числовые значение 3 координат и 3 углов поворота. Всего 6 неизвестных. Однако сам процесс движения характеризуется скоростью изменения во времени всех этих 6 величин. Значит, еще 6 неизвестных. Помножив 12 неизвестных на 18 членов солнечного семейства, мы получаем миленькую системку с 216 неизвестными.

    А теперь пусть читатель вспомнит, как прогрессировали трудности и регрессировали отметки в дневнике, когда он в школе от решения уравнения с одним неизвестным переходил к решению системы уравнений с двумя неизвестными, потом с тремя и так далее… А в нашем случае неприятности на количестве неизвестных еще далеко не кончаются. Для точного решения желательно учесть еще и то, что ни одно из небесных тел не является абсолютно твердым. А изменения фигуры тела, приливы и отливы меняют и скорость его вращения, и направления осей вращения; изменяется сила взаимного притяжения и нарушаются орбиты спутников. А кроме того, существуют еще электрические и магнитные силы; Солнце ежеминутно теряет массу, которую приобретают планеты; влияет межпланетная среда и суммарное гравитационное действие звезд Галактики; и еще, пусть читатель поверит на слово, многое-многое, что оказывает влияние на «положение и движение небесных тел в любой момент времени». Даже если учесть, что в XVIII веке половина из указанных причин была неизвестна, решение сформулированной задачи представляло собой непреодолимые трудности. Надо было найти такой упрощенный ее вариант, который, с одной стороны, был бы более близок к истине, чем «задача двух тел», а с другой — практически разрешим. В математике такие задачи называются «модельными».

    В солнечной системе главной силой, определяющей движения планет, является, конечно, притяжение Солнца. Из влияний планет следует, пожалуй, учесть только влияние Юпитера: он наиболее массивен. Остальными возмущениями для случая «модельной задачи» можно пренебречь. Так специалисты пришли к «задаче трех тел».

    К сожалению, общее решение ее оказалось тоже настолько сложным, что до начала XX столетия существовало мнение о невозможности его получения. Почти все крупные математики, астрономы и механики пробовали на этой задаче свои силы. И не безрезультатно. Были получены очень интересные решения для частных упрощенных случаев, которые сыграли важную роль в развитии науки. Особенно много сделали пять выдающихся математиков, живших примерно в один исторический период.

    Прежде всего это член Петербургской академии наук Л. Эйлер (1707–1783). За ним следуют французы — члены Парижской академии: А. Клеро (1713–1765), Ж. Лерон (1717–1783), принявший по достижении совершеннолетия фамилию д’Аламбер, и Ж. Лагранж (1736–1813). Все они занимались с тем или иным успехом решением «задачи трех тел» в приложении ее к теории Луны, рассматривая взаимные влияния трех небесных тел: Солнца, Земли и Луны.

    Последним членом «Великолепной пятерки» математиков был П. Лаплас (1749–1827). С него начинается новый период в космогонии, и потому на жизни и деятельности этой колоритнейшей фигуры бурной эпохи французской революции мы остановимся подробнее.

    Пьер-Симон Лаплас и седьмое примечание к «Изложению системы мира»

    П. Лаплас родился на севере Франции в крестьянской семье. Выдающиеся способности мальчика побудили состоятельных соседей помочь ему окончить школу Ордена бенедиктинцев. Трудно сказать, какие знания вынес П. Лаплас из заведения святых отцов. Но то, что именно после школы он стал убежденным атеистом, — в этом сомнений нет никаких. В 17 лет он становится преподавателем высшей школы в родном городе Бомон и пишет несколько математических статей. Затем, заручившись рекомендательным письмом, отправляется в Париж к Ж. д’Аламберу. Однако известный математик скептически отнесся к провинциальной протекции. Тогда П. Лаплас в несколько дней пишет работу по основам механики и посылает ее Ж. д’Аламберу снова. Справедливость восторжествовала; и скоро молодой честолюбец оказывается принятым в штат преподавателей Парижской высшей школы.

    Едва утвердившись, П. Лаплас одну за другой пишет и посылает в Парижскую академию наук свои работы. Редкая настойчивость в сочетании с определенным математическим талантом привели к тому, что в 24 года он становится адъюнктом, а в 36 лет — действительным членом академии.

    П. Лаплас как никто умел выделить главное в рассматриваемой проблеме; умел представить сложные явления природы в математической форме, сформулировать условия задачи и подобрать оригинальный метод ее решения.

    Перечислить работы П. Лапласа трудно — настолько их много, и так они разнообразны. Однако, несмотря на фундаментальные исследования в области математики и физики, основная часть его работ относится к астрономии.

    П. Лаплас доказал устойчивость строения солнечной системы, то есть постоянство орбит и неизменность средних расстояний планет от Солнца. Открыл причины периодических неравенств в движении Юпитера и Сатурна и решил для этого еще один частный случай знаменитой «задачи трех тел». Рассматривая теорию движения спутников Юпитера, он вывел законы, получившие его имя, и существенно дополнил лунную теорию. Можно сказать, что П. Лаплас фактически ее закончил, дав полный теоретический расчет движения Луны. Конечно, закончил в том смысле и на том уровне, который допускало состояние современной ему науки. Как итог его астрономических работ, следует назвать пятитомный «Трактат о небесной механике», в котором в последовательном изложении он объединил работы И. Ньютона, Л. Эйлера, Ж. д’Аламбера и А. Клеро и в котором сам П. Лаплас дает полное математическое объяснение движению тел солнечной системы.

    «В конце прошлого века, — пишет он в предисловии к первому тому, — И. Ньютон опубликовал свое открытие всемирного тяготения. С тех пор математикам удалось все известные явления мироздания свести к этому великому закону природы и таким образом достичь в астрономических теориях и таблицах неожиданной точности. Моя цель состоит в том, чтобы представить с единой точки зрения теории, рассеянные по разным работам, соединив вместе все результаты по равновесию и движению твердых и жидких тел, из которых построена наша солнечная система и подобные системы, раскинутые в просторах вселенной, и построить таким путем небесную механику».

    Этот трактат еще при жизни П. Лапласа стал классикой. И до наших дней многие идеи великолепной работы лежат в основе теоретической астрономии, а метод изложения служит образцом подхода к решению теоретических задач. Говорят, его последними словами перед смертью были: «Как ничтожно то, что мы знаем, по сравнению с безграничной областью непознанного». П. Лаплас, безусловно, был выдающимся ученым, великим ученым, великим математиком.

    Как жаль, что оценка его личности и человеческого достоинства не может быть произведена теми же словами. У П. Лапласа был пренеприятный характер. Исключительно тщеславный, заносчивый и грубый по отношению к людям, стоящим ниже его по общественной лестнице и к коллегам, он терпеть не мог деликатного Ж. Лагранжа и ссорился с А. Лавуазье. Пожалуй, единственный человек в академии, к которому он относился более или менее прилично, был Ж. д’Аламбер.



    П. Лаплас поддерживал республику, превознося свободу, равенство и братство. Но когда Наполеон стал первым консулом, проницательный математик выпросил у него должность домашнего секретаря. Уволенный через шесть недель за неспособность к этой работе, он был в утешение назначен членом сената. П. Лаплас посвятил третий том своей «Небесной механики» «Героическому умиротворителю Европы», добившись от императора Наполеона графского титула. Но уже несколько лет спустя голосовал за низложение своего кумира и радостно встретил восстановление Людовика XVIII. Готовый признать и отрицать все что угодно ради очередной орденской ленты, он позже и от короля получил звание маркиза и титул пэра Франции.

    «Изложение системы мира» — популярное произведение без единой формулы и без единого чертежа

    Содержание «Изложения» разбито на пять книг. В конце — ряд коротеньких примечаний. В последнем — седьмом — излагается гипотеза о происхождении солнечной системы. Сам П. Лаплас говорит о гипотезе, что «это догадки об образовании звезд и солнечной системы — догадки, которые я излагаю со всем сомнением, которое должно нам внушать все, что не является результатом наблюдения или вычисления».

    П. Лапласа всегда поражали некоторые особенности солнечной системы. Прежде всего, почему все планеты, открытые наблюдателями, обращаются вокруг Солнца в одном направлении? А также, почему их орбиты лежат почти в одной плоскости? Спутники тоже почему-то двигаются вокруг своих планет в прямом направлении, и орбиты их лежат в близких плоскостях. Эксцентриситеты всех планетных и спутниковых орбит чрезвычайно малы, и, следовательно, их орбиты близки к окружностям. В то же время орбиты комет очень вытянуты и могут почему-то иметь любые углы наклона к плоскости планетных орбит и солнечного экватора. Нуждалось, по мнению П. Лапласа, в объяснении и то, почему само Солнце и все планеты и спутники вращались вокруг своих осей также в одну сторону. Все эти особенности как бы подталкивали его к мысли, что в основе созидания должна лежать единая причина, единый принцип…

    И П. Лаплас делает вывод: различные небесные тела, образующие солнечную систему и связанные общими правилами движения, не могут собраться случайно. Они должны быть объединены общностью происхождения.

    Затем, критикуя гипотезу своего соотечественника Ж. Бюффона (о существовании гипотезы И. Канта П. Лаплас просто не знал), он говорит, что механизм, придуманный Ж. Бюффоном, в состоянии объяснить лишь первую особенность солнечной системы — общность движения планет — и никак не объясняет оставшиеся. Более того, тот факт, что орбиты планет — почти окружности, говорит о малой начальной скорости вещества Солнца, вырванного кометой. А в таком случае сгусток должен был вернуться и упасть снова на поверхность светила.

    Нет, делает заключение П. Лаплас, гипотеза Ж. Бюффона неверна. Но каким же можно представить себе механизм образования солнечной системы? И вот перед читателем разворачивается в строгой логической последовательности новая небулярная гипотеза образования небесных тел из первозданной туманности, быстро вращающейся вокруг своей оси.



    «Как! Еще одна небулярная гипотеза?» Увы, да! И не последняя, скажем прямо, забежав вперед по времени.

    Свою гипотезу П. Лаплас начинает с предположения, что некогда на месте всей солнечной системы существовала раскаленная туманность, вращавшаяся в прямом направлении вокруг оси, проходившей через центр. Естественно, что под действием центробежных сил согласно законам механики туманность сплющивалась в огромную лепешку, края которой заходили далеко за орбиту Урана, последней из известных в то время планет. Постепенно туманность охлаждалась. А охлаждаясь — сжималась. Но поскольку количество движения ее оставалось прежним, то, сжимаясь, она вращалась все быстрее и быстрее. Так конькобежцы-фигуристы, желая ускорить вращение, крепко прижимают руки к груди, и, наоборот, стоит им их раскинуть, как скорость вращения сразу падает.

    С увеличением скорости вращения туманности ее области, наиболее удаленные от оси, начинали испытывать все возрастающую центробежную силу. И в некоторый момент эта сила для самого отдаленного слоя туманности оказывалась больше силы притяжения. Тогда от плоского туманного облака отделилось в экваториальной плоскости кольцо. Со временем центральная часть оказалась, как мишень, окруженная целым роем концентрических вращающихся колец. Медленно-медленно, с позиций быстротечной человеческой жизни, из центральной массы образовалось Солнце, а кольца распались на отдельные сгущения, которые притянулись и поглотились наибольшими из них. Так образовались планеты и их спутники.

    Иногда, правда, очень редко, считал П. Лаплас, могут возникнуть обстоятельства, когда сгущение молекул газового кольца происходит без распада на отдельные части. Тогда из него образуется сплошное жидкое или твердое кольцо, типа кольца Сатурна, природа которого в те времена была неизвестна.

    Нарушали стройные рассуждения кометы, обладающие вытянутыми орбитами с большими эксцентриситетами. Ну что же, кто мешает предположить, что они являются гостями «со стороны», захваченными Солнцем? П. Лаплас так и полагает. Теперь его гипотеза объясняет все особенности солнечной системы.

    Не так, правда, благополучно обстояло дело с объяснением прямого направления вращения планет. Согласно третьему закону И. Кеплера в пределах кольца скорость частиц должна быть чем дальше от центра, тем меньше. Получалось, что все образовавшиеся планеты должны вращаться как раз в обратную сторону, а не в прямую. Это особенно легко понять из рисунка, которого, к сожалению, не сделал П. Лаплас. Впрочем, по-видимому, он знал этот изъян гипотезы и поэтому поспешил предположить, что за счет трения частиц внутренняя граница кольца потеряет большую часть скорости, чем внешняя. В результате все кольцо будет вращаться с одинаковой угловой скоростью, будто оно твердое. А это вполне обеспечит прямое вращение будущих планет.

    В основе своей гипотеза П. Лапласа полностью идентична гипотезе И. Канта. И потому спустя много лет ее стали называть «гипотезой Канта — Лапласа».

    Огромный успех выпал на долю книги «Изложение системы мира». У математика П. Лапласа действительно оказался редкий дар популяризатора. Он сам для себя сыграл ту же роль, которую Ф. Вольтер исполнил для И. Ньютона. И, как это часто случается в истории, мир запомнил его не как создателя великой «Небесной механики», а как автора «Системы мира» и творца небулярной гипотезы. У истории на этот счет какие-то свои критерии. Нам они иногда кажутся несправедливыми.

    Почему же все-таки именно небулярная точка зрения привлекла внимание П. Лапласа?

    Современником П. Лапласа был Вильям Гершель (1738–1822), прославленный английский астроном-наблюдатель. В. Гершель много внимания уделял туманностям. Составляя каталог туманных небесных объектов, астроном делал много рисунков. Глядя на них, он заметил, что все туманности в своих серединках обладают различной степенью сгущения. Эти центральные яркие ядра В. Гершель считал нарождающимися звездами. Он писал: «Эта точка зрения проливает новый свет на устройство неба. Оно мне теперь представляется великолепным садом, в котором находится масса разнообразнейших растений, посаженных в различные грядки и находящихся в различных стадиях развития».

    П. Лаплас хорошо знал труды В. Гершеля и не имел оснований сомневаться в достоверности его наблюдений. Выводы английского астронома-наблюдателя оказали большое влияние на взгляды французского астронома-теоретика. Но поскольку верил материалист П. Лаплас все же только тому, что можно было сначала рассчитать, а потом проверить по наблюдениям, то гипотезу свою он оформил лишь в виде «догадок и сомнений». Делом последователей было подвести под нее фундамент фактов и расчетов. И последователи нашлись.

    В середине XIX века французский математик Эдвард Рош показал, что туманность П. Лапласа, охлаждаясь, действительно должна вращаться все быстрее и быстрее. При этом она обязательно сплющится под действием центробежной силы и приобретет чечевицеобразную форму. При дальнейшем вращении с ребра «чечевицы» может начаться отрыв и отделение вещества. Однако, если представить себе оторвавшееся от туманности кольцо как сплошной газовый диск, то плотность его окажется столь незначительной, что причин собираться диффузному веществу в более плотное образование — планету — нет никаких. Сила притяжения между рассеянными частицами слишком мала.

    Э. Рош был хорошим математиком и глубоко уважал П. Лапласа. Чтобы обойти возникшее затруднение, он предположил, что отделение вещества происходило отдельными узкими «внутренними» кольцами. Мысль была превосходной не только потому, что снимала указанное затруднение, но и впервые более или менее удовлетворительно объясняла прямое вращение планет.

    Впрочем, в мемуаре содержалось и существенное противоречие П. Лапласу. Э. Рош утверждал, что кольцо Сатурна не остаток первоначальной туманности, доказывающей правильность общей идеи, а скорее бывший спутник, неосторожно приблизившийся к поверхности планеты и «разорванный» ее силами тяготения. Э. Рош вывел даже минимальное расстояние, на которое может подойти жидкий спутник к планете без опасения быть разорванным приливообразующими силами.

    Сближаясь с планетой, спутник постепенно начинает деформироваться. В экваториальной области у него образуются приливные «выпуклости», расположенные в направлении прямой, соединяющей центры спутника и планеты. После того как спутник пересечет границу «безопасности» и войдет в зону Роша, приливные выпуклости превратятся в огромные приливные горбы, бегущие вследствие вращения спутника по его поверхности. Все на нем — горы и долины придут в движение. И в конце концов небесное тело рассыплется. Работа Э. Роша пережила саму гипотезу, для которой должна была служить лишь некоторым подспорьем, хотя в свое время была несправедливо забыта.

    Долгие годы гипотеза II. Лапласа пользовалась исключительной популярностью. Но чем более популярна идея, тем большее внимание критики она к себе привлекает.









    Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное

    Все материалы представлены для ознакомления и принадлежат их авторам.