Онлайн библиотека PLAM.RU


  • 9.1. Понятие об экосистемах. Учение о биогеоценозах
  • 9.2. Поток энергии в экосистемах
  • 9.3. Биологическая продуктивность экосистем
  • 9.3.1. Первичная и вторичная продукция
  • 9.3.2. Правило пирамид
  • 9.3.3. Распределение биологической продукции
  • 9.4. Динамика экосистем
  • 9.4.1. Циклические изменения
  • 9.4.2. Сукцессии и дигрессии
  • 9.5. Агроэкосистемы
  • Глава 9. ЭКОСИСТЕМЫ

    9.1. Понятие об экосистемах. Учение о биогеоценозах

    Сообщества организмов связаны с неорганической средой теснейшими материально-энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. Гетеротрофы живут за счет автотрофов, но нуждаются в поступлении таких неорганических соединений, как кислород и вода. В любом конкретном местообитании запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течение жизни организмов (в результате дыхания, экскреции, дефекации), так и после их смерти, в результате разложения трупов и растительных остатков. Таким образом, сообщество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

    Понятие об экосистемах. Любую совокупность организмов и неорганических компонентов, в которой может осуществляться круговорот веществ, называют экосистемой. Термин был предложен в 1935 г. английским экологом А. Тенсли, который подчеркивал, что при таком подходе неорганические и органические факторы выступают как равноправные компоненты и мы не можем отделить организмы от конкретной окружающей их среды. А. Тенсли рассматривал экосистемы как основные единицы природы на поверхности Земли, хотя они и не имеют определенного объема и могут охватывать пространство любой протяженности.

    Для поддержания круговорота веществ в системе необходимо наличие запаса неорганических молекул в усвояемой форме и трех функционально различных экологических групп организмов: продуцентов, консументов и редуцентов.

    Продуцентами выступают автотрофные организмы, способные строить свои тела за счет неорганических соединений. Консументы– это гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы. Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительная, так как и консументы, и сами продуценты выступают частично в роли редуцентов, в течение жизни выделяя в окружающую среду минеральные продукты обмена веществ.

    В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена – консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например на тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.

    Масштабы экосистемы в природе чрезвычайно различны. Неодинакова также степень замкнутости поддерживаемых в них круговоротов вещества, т. е. многократность вовлечения одних и тех же атомов в циклы. В качестве отдельных экосистем можно рассматривать, например, и подушку лишайников на стволе дерева, и разрушающийся пень с его населением, и небольшой временный водоем, луг, лес, степь, пустыню, весь океан и, наконец, всю поверхность Земли, занятую жизнью.

    В подушке лишайников мы найдем все необходимые компоненты экосистемы. Продуценты – симбиотические водоросли, осуществляющие фотосинтез. В качестве консументов выступают некоторые мелкие членистоногие, питающиеся живыми тканями лишайника, а также грибные гифы, по существу паразитирующие на клетках водорослей. И гифы грибов, и большинство микроскопических животных, обитающих в лишайниковых подушках (клещи, коллемболы, нематоды, коловратки, простейшие), выступают и в роли редуцентов. Грибные гифы живут не только за счет живых, но и за счет погибших клеток водорослей, а мелкие животные-сапрофаги перерабатывают отмершие слоевища, в разрушении которых им помогают многочисленные микроорганизмы. Степень замкнутости круговорота в такой системе очень невелика: значительная часть продуктов распада выносится за пределы лишайника – вымывается дождевыми водами, осыпается вниз со ствола. Кроме того, часть животных мигрирует в другие местообитания. Тем не менее часть атомов успевает пройти несколько циклов, включаясь в тела живых организмов и освобождаясь из них, прежде чем покинет данную экосистему.

    В некоторых типах экосистем вынос вещества за их пределы настолько велик, что их стабильность поддерживается в основном за счет притока такого же количества вещества извне, тогда как внутренний круговорот малоэффективен. Таковы проточные водоемы, реки, ручьи, участки на крутых склонах гор. Другие экосистемы имеют значительно более полный круговорот веществ и относительно автономны (леса, луга, степи на плакорных участках, озера и т. п.). Однако ни одна, даже самая крупная, экосистема Земли не имеет полностью замкнутого круговорота. Материки интенсивно обмениваются веществом с океанами, причем большую роль в этих процессах играет атмосфера, и вся наша планета часть материи получает из космического пространства, а часть отдает в космос.

    В соответствии с иерархией сообществ жизнь на Земле проявляется и в иерархичности соответствующих экосистем. Эко-системная организация жизни является одним из необходимых условий ее существования. Запасы биогенных элементов, из которых строят тела живые организмы, на Земле в целом и на каждом конкретном участке на ее поверхности небезграничны. Лишь система круговоротов могла придать этим запасам свойство бесконечности, необходимое для продолжения жизни. Поддерживать и осуществлять круговорот могут только функционально различные группы организмов. Таким образом, функционально-экологическое разнообразие живых существ и организация потока извлекаемых из окружающей среды веществ в циклы – древнейшее свойство жизни.

    Учение о биогеоценозах. Параллельно с развитием концепции экосистем успешно развивается учение о биогеоценозах, автором которого был академик В. Н. Сукачев (1942).

    «Биогеоценоз – это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий), имеющих свою специфику взаимодействия этих слагаемых ее компонентов и определенный тип обмена веществами и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии» (В. Н. Сукачев, 1964).

    «Экосистема» и «биогеоценоз» – близкие по сути понятия, но если первое из них приложимо для обозначения систем, обеспечивающих круговорот любого ранга, то «биогеоценоз» – понятие территориальное, относимое к таким участкам суши, которые заняты определенными единицами растительного покрова – фитоценозами. Наука о биогеоценозах – биогеоценология – выросла из геоботаники и направлена на изучение функционирования экосистем в конкретных условиях ландшафта в зависимости от свойств почвы, рельефа, характера окружения биогеоценоза и составляющих его первичных компонентов – горной породы, животных, растений, микроорганизмов.

    В биогеоценозе В. Н. Сукачев выделял два блока: экотоп – совокупность условий абиотической среды и биоценоз– совокупность всех живых организмов.

    Экотоп часто рассматривают как абиотическую среду, не преобразованную растениями (первичный комплекс факторов физико-географической среды), а биотоп– как совокупность элементов абиотической среды, видоизмененных средообразующей деятельностью живых организмов. Во внутреннем сложении биогеоценоза выделяют такие структурно-функциональные единицы, как парцеллы (термин предложен Н. В.Дылисом). Биогеоценотические парцеллы включают в себя растения, животное население, микроорганизмы, мертвую органику, почву и атмосферу по всей вертикальной толще биогеоценоза, создавая его внутреннюю мозаику. Биогеоценотические парцеллы различаются визуально по растительности: высоте и сомкнутости ярусов, видовому составу, жизненному состоянию и возрастному спектру популяций доминирующих видов. Иногда они хорошо отграничены по составу, строению и мощности лесной подстилки. Названия им дают обычно по растениям, доминирующим в разных ярусах. Например, в волосистоосоковом дубо-ельнике можно выделить такие парцеллы, как елово-волосистоосоковая, елово-кисличная, крупнопапоротниковая в окнах древесного яруса, дубово-снытевая, дубово-осиново-медуничная, березово-елово-мертвопокровная, осиново-снытевая и др.

    Внутри каждой парцеллы создается свой фитоклимат. Весной в тенистых еловых парцеллах снег лежит дольше, чем на участках под листопадными деревьями или в окнах. Поэтому активная жизнь весной в парцеллах наступает в разные сроки, переработка детрита также идет с разной скоростью. Границы между парцеллами могут быть как относительно четкими, так и размытыми. Взаимосвязь осуществляется как в результате кондиционирования условий среды (теплообмен, изменение освещения, перераспределение осадков и т. п.), так и в результате материально-энергетического обмена. Происходит разброс растительного опада, перенос пыльцы, спор, семян и плодов воздушными потоками и животными, перемещение животных, поверхностный сток осадков и талых вод, передвигающих минеральные и органические вещества. Все это поддерживает биогеоценоз как единую, внутренне разнородную экосистему.

    Роль разных парцелл в строении и функционировании биогеоценозов неодинакова, наиболее крупные парцеллы, занимающие большие пространства и объем, называют основными. Их бывает немного. Именно они определяют внешний облик и строй биогеоценоза. Парцеллы, занимающие небольшие площади, называют дополняющими. Число их всегда больше. Одни парцеллы более устойчивы, другие подвержены значительным и быстрым изменениям. По мере взросления и старения растений парцеллы могут сильно изменить состав и структуру, ритмы сезонного развития, по-разному участвовать в круговороте веществ.



    Рис. 145. Окна возобновления основных пород в лесном биогеоценозе (по О. В. Смирновой, 1998)


    Мозаичность лесных биогеоценозов и появление новых парцелл часто связаны с образованием в лесах окон, т. е. нарушением древесного яруса в связи с вывалом старых деревьев, вспышек массовых вредителей – насекомых, поражением грибами, деятельностью крупных копытных. Создание такой мозаичности совершенно необходимо для устойчивого существования леса и возобновления главенствующих пород деревьев, подрост которых часто не может развиваться под материнскими кронами, так как требует иных условий освещения и минерального питания. Окна возобновления для разных пород должны иметь достаточную пространственную протяженность (рис. 145). В восточноевропейских широколиственных лесах ни один вид не может переходить к плодоношению в окнах, соизмеримых всего с проекциями крон одного-двух взрослых деревьев. Даже наиболее теневыносливым из них – букам, кленам – требуются освещенные парцеллы в 400–600 м2, а полный онтогенез светолюбивых видов – дуба, ясеня, осины может завершаться только в крупных окнах не менее 1500–2000 м2.

    На основании детального изучения структуры и функционирования биогеоценозов в экологии в последнее время развивается концепция мозаично-циклической организации экосистем. С этой точки зрения устойчивое существование многих видов в экосистеме достигается за счет постоянно происходящих в ней естественных нарушений местообитаний, позволяющих новым поколениям занимать вновь освободившееся пространство.

    Биогеоценология рассматривает поверхность Земли как сеть соседствующих биогеоценозов, связанных между собой через миграцию веществ, но тем не менее, хотя и в разной степени, автономных и специфичных по своим круговоротам. Конкретные свойства участка, занятого биогеоценозом, придают ему своеобразие, выделяя из других, исходных по типу.

    Обе концепции – экосистем и биогеоценозов – дополняют и обогащают друг друга, позволяя рассматривать функциональные связи сообществ и окружающей их неорганической среды в разных аспектах и с разных точек зрения.

    9.2. Поток энергии в экосистемах

    Поддержание жизнедеятельности организмов и круговорот вещества в экосистемах возможны только за счет постоянного притока энергии (рис. 146). В конечном счете вся жизнь на Земле существует за счет энергии солнечного излучения, которая переводится фотосинтезирующими организмами в химические связи органических соединений. 4етеротрофы получают энергию с пищей. Все живые существа являются объектами питания других, т. е. связаны между собой энергетическими отношениями. Пищевые связи в сообществах – это механизмы передачи энергии от одного организма к другому. В каждом сообществе трофические связи переплетены в сложную сеть. Организмы любого вида являются потенциальной пищей многих других видов. Врагами тлей, например, служат личинки и жуки божьих коровок, личинки мух-сирфид, пауки, насекомоядные птицы и многие другие. За счет дубов в широколиственных лесах могут жить несколько сотен форм различных членистоногих, фитонематод, паразитических грибков и т. п. Хищники обычно легко переключаются с одного вида жертв на другой, а многие, кроме животной пищи, способны потреблять в некотором количестве и растительную. Таким образом, трофические сети в биоценозах очень сложные и создается впечатление, что энергия, поступившая в них, может долго мигрировать от одного организма к другому.



    Рис. 146. Распределение радиации (в кружочках – %) в бореальном смешанном лесу и в посевах кукурузы (по В. Лархеру, 1978): R. отр. – радиация, отраженная от поверхности насаждения; R. погл. – радиация, поглощенная почвой


    На самом деле путь каждой конкретной порции энергии, накопленной зелеными растениями, короток. Она может передаваться не более чем через 4–6 звеньев ряда, состоящего из последовательно питающихся друг другом организмов. Такие ряды, в которых можно проследить пути расходования изначальной дозы энергии, называют цепями питания (рис. 147).

    Место каждого звена в цепи питания называют трофическим уровнем. Первый трофический уровень – это всегда продуценты, создатели органической массы; растительноядные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм, – к третьему; потребляющие других плотоядных – соответственно к четвертому и т. д. Таким образом, различают консументов первого, второго и третьего порядков, занимающих разные уровни в цепях питания. Естественно, что основную роль при этом играет пищевая специализация консументов. Виды с широким спектром питания могут включаться в пищевые цепи на разных трофических уровнях. Так, например, человек, в рацион которого входит как растительная пища, так и мясо травоядных и плотоядных животных, выступает в разных пищевых цепях в качестве консумента первого, второго и третьего порядков. Виды, специализированные на растительной пище, например тли, зайцеобразные, копытные, всегда являются вторым звеном в цепях питания.



    Рис. 147. Поток энергии через три уровня простой пищевой цепи (по П. Дювиньо и М. Тангу, 1968): Пв – продукция валовая; Пч – продукция чистая; К – продукция, использованная на корм; А2, А3 – корм, ассимилированный консументами; н – неиспользованная часть продукции; П2 – вторичная продукция (травоядные); П3 – прирост хищников; Д13 – траты энергии на обмен веществ (траты на дыхание) на разных уровнях пищевой цепи


    Энергетический баланс консументов складывается следующим образом. Поглощенная пища обычно усваивается не полностью. Неусвоенная часть вновь возвращается во внешнюю среду (в виде экскрементов) и в дальнейшем может быть вовлечена в другие цепи питания. Процент усвояемости зависит от состава пищи и набора пищеварительных ферментов организма. У животных усвояемость пищевых материалов варьирует от 12–20 % (некоторые сапрофаги) до 75 % и более (плотоядные виды). Ассимилированная организмом пища вместе с запасом в ней энергии расходуется двояким образом. Большая часть энергии используется на поддержание рабочих процессов в клетках, а продукты расщепления подлежат удалению из организма в составе экскретов (мочи, пота, выделений различных желез) и углекислого газа, образующегося при дыхании. Энергетические затраты на поддержание всех метаболических процессов условно называют тратой на дыхание, так как общие их масштабы можно оценить, учитывая выделение СО2 организмом. Меньшая часть усвоенной пищи трансформируется в ткани самого организма, т. е. идет на рост или откладывание запасных питательных веществ, увеличение массы тела. Эти отношения сокращенно можно выразить формулой:

    Р = П + Д + Н,

    где Р – рацион консумента, т. е. количество пищи, съедаемой им за определенный период времени; П – продукция, т. е. траты на рост; Д – траты на дыхание, т. е. поддержание обмена веществ за тот же период; Н – энергия неусвоенной пищи, выделенной в виде экскрементов.

    Передача энергии в химических реакциях в организме происходит, согласно второму закону термодинамики, с потерей части ее в виде тепла. Особенно велики эти потери при работе мышечных клеток животных, КПД которых очень низок. В конечном счете вся энергия, использованная на метаболизм, переходит в тепловую и рассеивается в окружающем пространстве.

    Траты на дыхание во много раз больше энергетических затрат на увеличение массы самого организма. Конкретные соотношения зависят от стадии развития и физиологического состояния особей. У молодых траты на рост могут достигать значительных величин, тогда как взрослые используют энергию пищи почти исключительно на поддержание обмена веществ и созревание половых продуктов. Интенсивность питания снижается с возрастом. Так, ежесуточный рацион карпов массой от 5 до 15 г составляет почти 1/4 от массы их тела, у более крупных особей – от 150 до 450 г – всего 1/10, а у рыб массой 500–800 г – 1/16.

    Коэффициент использования потребленной пищи на рост (К) рассчитывают как отношение продукции к рациону:



    где П – траты на рост, Р – количество пищи, съеденной за тот же период.

    Двупарноногие многоножки кивсяки в период роста, который продолжается до трех лет, тратят на рост от 6 до 25 % съеденной пищи при усвояемости в среднем 30 %. В последующем их масса стабилизируется. Кивсяки живут до 12 лет. В умеренном поясе они активны 4–5 месяцев в году. Особь, масса которой во взрослом состоянии 0,5 г, за свою жизнь потребляет 250–300 г опада (80–90 г абсолютно сухой массы). Так как кивсяки многократно линяют, часть усвоенной энергии идет на восстановление покровов. Таким образом, отношение съеденного в течение жизни корма к массе взрослого животного составляет 500–600: 1.

    У такого гетеротермного животного, как малый суслик, который активен всего 2–2,5 месяца в году, это соотношение всего около 150: 1. Средний рацион суслика 30 г сухой массы растений (или в среднем 100 г сырой) при массе зверька 200 г и продолжительности жизни 4 года. Постоянно активным в течение года рыжим полевкам нужно гораздо больше энергии для поддержания жизнедеятельности. Взрослые зверьки массой 20 г съедают в среднем до 4 г сухого корма в день. При продолжительности жизни примерно в 24 месяца затрата кормов на жизнь одной особи составляет примерно 30 кг в сырой массе, что приблизительно в 1500 раз больше массы взрослого животного.

    Таким образом, основная часть потребляемой с пищей энергии идет у животных на поддержание их жизнедеятельности и лишь сравнительно небольшая – на построение тела, рост и размножение. Иными словами, большая часть энергии при переходе из одного звена пищевой цепи в другое теряется, так как к следующему потребителю может поступить лишь та энергия, которая заключается в массе поедаемого организма. По грубым подсчетам, эти потери составляют около 90 % при каждом акте передачи энергии через трофическую цепь. Следовательно, если калорийность растительного организма 1000 Дж, при полном поедании его травоядным животным в теле последнего останется из этой порции всего 100, в теле хищника – лишь 10 Дж, а если этот хищник будет съеден другим, то на его долю придется только 1 Дж, т. е. 0,1 %.

    Таким образом, запас энергии, накопленный зелеными растениями, в цепях питания стремительно иссякает. Поэтому пищевая цепь включает обычно всего 4–5 звеньев. Потерянная в цепях питания энергия может быть восполнена только поступлением новых ее порций. Поэтому в экосистемах не может быть круговорота энергии, аналогичного круговороту веществ (рис. 148). Экосистема функционирует только за счет направленного потока энергии, постоянного поступления ее извне в виде солнечного излучения или готовых запасов органического вещества.



    Рис. 148. Схема биогеохимического круговорота на фоне потока энергии (по Ю. Одуму, 1975): Пв – валовая продукция; Пч – чистая продукция; П2 – вторичная продукция; Д – траты энергии на обмен веществ (траты на дыхание); заштрихованная часть рисунка – круговорот вещества


    Трофические цепи, которые начинаются с фотосинтезирующих организмов, называют цепями выедания (или пастбищными, или цепями потребления), а цепи, которые начинаются с отмерших остатков растений, трупов и экскрементов животных, – детритными цепями разложения. Таким образом, поток энергии, входящий в экосистему, разбивается далее как бы на два основные русла, поступая к консументам через живые ткани растений или запасы мертвого органического вещества, источником которого также является фотосинтез.

    В разных типах экосистем мощность потоков энергии через цепи выедания и разложения различна: в водных сообществах большая часть энергии, фиксированной одноклеточными водорослями, поступает к питающимся фитопланктоном животным и далее – к хищникам и значительно меньшая включается в цепи разложения. В большинстве экосистем суши противоположное соотношение: в лесах, например, более 90 % ежегодного прироста растительной массы поступает через опад в детритные цепи (рис. 149).

    А


    Б


    В


    Рис. 149. Разложение листьев в лесной подстилке (деструкционный блок экосистемы):

    А – поражение грибным мицелием;

    Б – скелетирование животными-сапрофагами;

    В – экскременты сапрофагов, входящие в состав гумусного слоя

    9.3. Биологическая продуктивность экосистем

    9.3.1. Первичная и вторичная продукция

    Скорость, с которой продуценты экосистемы фиксируют солнечную энергию в химических связях синтезируемого органического вещества, определяет продуктивность сообществ. Органическую массу, создаваемую растениями за единицу времени, называют первичной продукцией сообщества. Продукцию выражают количественно в сырой или сухой массе растений либо в энергетических единицах – эквивалентном числе джоулей.

    Валовая первичная продукция – количество вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идет на поддержание жизнедеятельности самих растений (траты на дыхание). Эта часть может быть достаточно большой. В тропических лесах и зрелых лесах умеренного пояса она составляет от 40 до 70 % валовой продукции. Планктонные водоросли используют на метаболизм около 40 % фиксируемой энергии. Такого же порядка траты на дыхание у большинства сельскохозяйственных культур. Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию, которая представляет собой величину прироста растений. Чистая первичная продукция – это энергетический резерв для консументов и редуцентов. Перерабатываясь в цепях питания, она идет на пополнение массы гетеротрофных организмов. Прирост за единицу времени массы консументов – это вторичная продукция сообщества. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего.

    Гетеротрофы, включаясь в трофические цепи, живут в конечном счете за счет чистой первичной продукции сообщества. В разных экосистемах они расходуют ее с разной полнотой. Если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений, то это ведет к постепенному увеличению общей биомассы продуцентов. Под биомассой понимают суммарную массу организмов данной группы или всего сообщества в целом. Часто биомассу выражают в эквивалентных энергетических единицах.

    Недостаточная утилизация продуктов опада в цепях разложения имеет следствием накопление в системе мертвого органического вещества, что происходит, например, при заторфовывании болот, зарастании мелководных водоемов, создании больших запасов подстилки в таежных лесах и т. п. Биомасса сообщества с уравновешенным круговоротом веществ остается относительно постоянной, так как практически вся первичная продукция тратится в цепях питания и разложения.

    9.3.2. Правило пирамид

    Экосистемы очень разнообразны по относительной скорости создания и расходования как первичной продукции, так и вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные количественные соотношения первичной и вторичной продукции, получившие название правила пирамиды продукции: на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени, больше, чем на последующем. Графически это правило выражают в виде пирамид, суживающихся кверху и образованных поставленными друг на друга прямоугольниками равной высоты, длина которых соответствует масштабам продукции на соответствующих трофических уровнях. Пирамида продукции отражает законы расходования энергии в пищевых цепях.

    Скорость создания органического вещества не определяет его суммарные запасы, т. е. общую биомассу всех организмов каждого трофического уровня. Наличная биомасса продуцентов или консументов в конкретных экосистемах зависит от того, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий, т. е. насколько сильно выедание образовавшихся запасов. Немаловажную роль при этом играет скорость оборота генераций основных продуцентов и консументов.



    Рис. 150. Пирамиды биомассы в некоторых биоценозах (по Ф. Дре, 1976): П – продуценты; РК – растительноядные консументы; ПК – плотоядные консументы; Ф – фитопланктон; 3 – зоопланктон


    В большинстве наземных экосистем действует также правило пирамиды биомасс, т. е. суммарная масса растений оказывается больше, чем биомасса всех фитофагов и травоядных, а масса тех, в свою очередь, превышает массу всех хищников (рис. 150). Отношение годового прироста растительности к биомассе в наземных экосистемах сравнительно невелико. В разных фитоценозах, где основные продуценты различаются по длительности жизненного цикла, размерам и темпам роста, это соотношение варьирует от 2 до 76 %. Особенно низки темпы относительного прироста биомассы в лесах разных зон, где годовая продукция составляет лишь 2–6% от общей массы растений, накопленной в телах долгоживущих крупных деревьев. Даже в наиболее продуктивных дождевых тропических лесах эта величина не превышает 6,5 %. В сообществах с господством травянистых форм скорость воспроизводства биомассы гораздо выше: годовая продукция в степях составляет 41–55 %, а в травяных тугаях и эфемерно-кустарниковых полупустынях достигает даже 70–76 %.

    Отношение первичной продукции к биомассе растений определяет те масштабы выедания растительной массы, которые возможны в сообществе без подрыва его продуктивности. Относительная доля потребляемой животными первичной продукции в травянистых сообществах выше, чем в лесах. Копытные, грызуны, насекомые-фитофаги в степях используют до 70 % годового прироста растений, тогда как в лесах в среднем не более 10 %. Однако возможные пределы отчуждения растительной массы животными в наземных сообществах не реализуются полностью и значительная часть ежегодной продукции поступает в опад.

    В пелагиали океанов, где основными продуцентами являются одноклеточные водоросли с высокой скоростью оборота генераций, их годовая продукция в десятки и даже сотни раз может превышать запас биомассы (рис. 151). Вся чистая первичная продукция так быстро вовлекается в цепи питания, что накопление биомассы водорослей очень мало, но вследствие высоких темпов размножения небольшой их запас оказывается достаточным для поддержания скорости воссоздания органического вещества.



    Рис. 151. Схема соотношения продукции и биомассы у бактерий (1), фитопланктона (2), зоопланктона (3), бентоса (4) и рыб (5) в Баренцевом море (по Л. А. Зенкевичу из С. А. Зернова, 1949)


    Для океана правило пирамиды биомасс недействительно (пирамида имеет перевернутый вид). На высших трофических уровнях преобладает тенденция к накоплению биомассы, так как длительность жизни крупных хищников велика, скорость оборота их генераций, наоборот, мала и в их телах задерживается значительная часть вещества, поступающего по цепям питания.

    В тех трофических цепях, где передача энергии происходит в основном через связи хищник – жертва, часто выдерживается правило пирамиды чисел: общее число особей, участвующих в цепях питания, с каждым звеном уменьшается. Это связано с тем, что хищники, как правило, крупнее объектов своего питания и для поддержания биомассы одного хищника нужно несколько или много жертв. Из этого правила могут быть и исключения – те редкие случаи, когда более мелкие хищники живут за счет групповой охоты на крупных животных. Правило пирамиды чисел было подмечено еще в 1927 г. Ч. Элтоном, который отметил также, что оно неприменимо к цепям питания паразитов, размеры которых с каждым звеном уменьшаются, а число особей возрастает.

    Все три правила пирамид – продукции, биомассы и чисел – выражают в конечном счете энергетические отношения в экосистемах, и если два последних проявляются в сообществах с определенной трофической структурой, то первое (пирамида продукции) имеет универсальный характер.

    Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют чрезвычайное практическое значение. Первичная продукция агроценозов и эксплуатации человеком природных сообществ – основной источник запасов пищи для человечества. Не менее важна и вторичная продукция, получаемая за счет сельскохозяйственных и промысловых животных, так как животные белки включают целый ряд незаменимых для людей аминокислот, которых нет в растительной пище. Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Кроме того, необходимо хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность. Подобные расчеты обычно очень сложны из-за методических трудностей и точнее всего выполнены для более простых водных экосистем. Примером энергетических соотношений в конкретном сообществе могут послужить данные, полученные для экосистем одного из озер (табл. 2). Отношение П/Б отражает скорость прироста.

    Таблица 2

    Поток энергии в экосистеме эвтрофного озера (в кДж/м2) в среднем за вегетационный период (по Г. Г. Винбергу, 1969)



    В данном водном сообществе действует правило пирамиды биомасс, так как общая масса продуцентов выше, чем фитофагов, а доля хищных, наоборот, меньше. Наивысшая продуктивность характерна для фито– и бактериопланктона. В исследованном озере отношения их П/Б довольно низки, что говорит об относительно слабом вовлечении первичной продукции в цепи питания. Биомасса бентоса, основу которой составляют крупные моллюски, почти вдвое больше биомассы планктона, тогда как продукция во много раз ниже. В зоопланктоне продукция нехищных видов лишь ненамного выше рациона их потребителей, следовательно, пищевые связи планктона достаточно напряжены. Вся продукция нехищных рыб составляет лишь около 0,5 % первичной продукции водоема, и, следовательно, рыбы занимают скромное место в потоке энергии в экосистеме озера. Тем не менее они потребляют значительную часть прироста зоопланктона и бентоса и, следовательно, оказывают существенное влияние на регулирование их продукции.

    Описание потока энергии, таким образом, является фундаментом детального биологического анализа для установления зависимости конечных, полезных для человека продуктов от функционирования всей экологической системы в целом.

    9.3.3. Распределение биологической продукции

    Важнейшим практическим результатом энергетического подхода к изучению экосистем явилось осуществление исследований по Международной биологической программе, проводившихся учеными разных стран мира в течение ряда лет, начиная с 1969 г. в целях изучения потенциальной биологической продуктивности Земли.

    Теоретическая возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Максимально достигаемый в природе КПД фотосинтеза 10–12 % энергии ФАР, что составляет около половины от теоретически возможного. Такая скорость связывания энергии достигается, например, в зарослях джугары и тростника в Таджикистане в кратковременные, наиболее благоприятные периоды. КПД фотосинтеза в 5 % считается очень высоким для фитоценоза. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1 %, так как фотосинтетическая активность растений ограничивается множеством факторов.

    Мировое распределение первичной биологической продукции крайне неравномерно (рис. 152). Самый большой абсолютный прирост растительной массы достигает в среднем 25 г/м2 в день в очень благоприятных условиях, например в эстуариях рек и в лиманах аридных районов, при высокой обеспеченности растений водой, светом и минеральным питанием. На больших площадях продуктивность автотрофов не превышает 0,1 г/м2. Таковы жаркие пустыни, где жизнь лимитируется недостатком воды, полярные пустыни, где не хватает тепла, и обширные внутренние пространства океанов с крайним дефицитом питательных веществ для водорослей. Общая годовая продукция сухого органического вещества на Земле составляет 150–200 млрд т. Более трети его образуется в океанах, около двух третей – на суше. Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Энергия, недоиспользованная консументами, запасается в их телах, органических осадках водоемов и гумусе почв.



    Рис. 152. Распределение первичной продукции по земному шару


    Эффективность связывания растительностью солнечной радиации снижается при недостатке тепла и влаги, при неблагоприятных физических и химических свойствах почвы и т. п. Продуктивность растительности изменяется не только при переходе от одной климатической зоны к другой, но и в пределах каждой зоны. На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с увеличением притока тепла и продолжительности вегетационного сезона. Годовой прирост растительности изменяется от 20 ц/га на побережье и островах Северного Ледовитого океана до более чем 200 ц/га на Черноморском побережье Кавказа. В среднеазиатских пустынях продуктивность падает до 20 ц/га.

    Средний коэффициент использования энергии ФАР для всей территории бывшего СССР составляет 0,8 %: от 1,8–2,0 % на Кавказе до 0,1–0,2 % в пустынях Средней Азии. В большинстве восточных районов, где менее благоприятны условия увлажнения, этот коэффициент составляет 0,4–0,8 %, на европейской территории – 1,0–1,2 %. КПД суммарной радиации примерно вдвое ниже.

    Для пяти континентов мира средняя продуктивность различается сравнительно мало. Исключением является Южная Америка, на большей части которой условия для развития растительности очень благоприятны (табл. 3).

    Таблица 3

    Продуктивность естественного растительного покрова (по Н. А. Ефимовой)



    Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими примерно 10 % площади суши (около 1,4 млрд га). Общий годовой прирост культурных растений составляет около 16 % от всей продуктивности суши, большая часть которой приходится на леса. Примерно половина урожая идет непосредственно на питание людей, остальная часть – на корм домашним животным, используется в промышленности и теряется в отбросах.

    Растительная пища обходится для людей энергетически дешевле, чем животная. Сельскохозяйственные площади при рациональном использовании и распределении продукции могли бы обеспечить растительной пищей примерно вдвое большее население Земли, чем существующее. Однако сельскохозяйственное производство нуждается в большой затрате труда и капиталовложениях. Особенно трудно обеспечить население вторичной продукцией. В рацион человека должно входить не менее 30 г белков в день. Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно менее 50 % потребностей современного населения Земли.

    Существующие ограничения, накладываемые масштабами вторичной продуктивности, усиливаются несовершенством социальных систем распределения. Большая часть населения Земли находится, таким образом, в состоянии хронического белкового голодания, а значительная часть людей страдает также и от общего недоедания.

    Таким образом, увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из основных задач, стоящих перед человечеством.

    9.4. Динамика экосистем

    Любой биоценоз динамичен, в нем постоянно происходит изменение в состоянии и жизнедеятельности его членов и соотношении популяций. Все многообразные изменения, происходящие в любом сообществе, можно отнести к двум основным типам: циклические и поступательные.

    9.4.1. Циклические изменения

    Циклические изменения сообществ отражают суточную, сезонную и многолетнюю периодичность внешних условий и проявления эндогенных ритмов организмов.

    Суточные преобразования в биоценозах обычно выражены тем сильнее, чем значительнее разница температур, влажности и других факторов среды днем и ночью. Так, в песчаных пустынях Средней Азии жизнь летом в полуденные часы замирает. Даже виды с дневной активностью прячутся от жары в норах, в тени саксаула либо на его ветвях (агамы, ящерки). Ночью пустыня оживает. Ночных и сумеречных животных здесь больше, чем дневных. Многие дневные виды летом переходят к ночному образу жизни (большинство змей, пауки, чернотелки). Активно действуют жуки-копрофаги, вылетают козодои, домовые сычи, кормятся тушканчики, гекконы, хищничают фаланги, скорпионы, лисицы, корсаки, змеи. Суточные ритмы прослеживаются в сообществах всех зон, от тропиков до тундр. Даже при непрерывном освещении летом в тундре отмечаются суточные ритмы в распускании цветков у растений, питании птиц, в лёте и распределении насекомых и т. п.

    Сезонная изменчивость биоценозов выражается в изменении не только состояния и активности, но и количественного соотношения отдельных видов в зависимости от циклов их размножения, сезонных миграций, отмирания отдельных генераций в течение года и т. п. На определенное время года многие виды практически полностью выключаются из жизни сообщества, переходя в состояние глубокого покоя (оцепенения, спячки, диапаузы), переживая неблагоприятный период на стадии яиц и семян, перекочевывая или улетая в другие биотопы или географические районы.

    Сезонной изменчивости подвержена зачастую и ярусная структура биоценоза: отдельные ярусы растений могут полностью исчезать в соответствующие сезоны года, например, травянистый ярус, состоящий из однолетников.

    Сезонные ритмы сообществ наиболее отчетливо выражены в климатических зонах и областях с контрастными условиями лета и зимы. В слабой форме они, однако, прослеживаются даже в тропических дождевых лесах, где длительность дня, температура и режим влажности очень мало меняются в течение года.

    Многолетняя изменчивость – нормальное явление в жизни любого биоценоза. Она зависит от изменения по годам метеорологических условий (климатических флюктуации) или других внешних факторов, действующих на сообщество (например, степени разлива рек). Кроме того, многолетняя периодичность может быть связана с особенностями жизненного цикла растений-эдификаторов, с повторением массовых размножений животных или патогенных для растений микроорганизмов и т. д.

    Примером могут служить изменения, происходящие на лугах лесостепной Барабы. Количество осадков, выпадающих в Барабинской лесостепи, резко колеблется по годам, и, как правило, ряд засушливых лет чередуется с многолетним периодом обилия осадков. Постепенное понижение уровня почвенно-грунтовых вод в засушливый период 1950–1955 гг. стимулировало проникновение вслед за ними корневых систем глубокоукореняющихся трав, таких, как колосняк мохнатый, кермек Гмелина и др. У этих видов отсутствовала реакция на иссушение почвы, но при дальнейшем повышении уровня грунтовых вод они пострадали в первую очередь из-за отмирания затопленных водой корневых окончаний. Засуха особенно сильно сказалась на мезофильных мелкоукореняющихся видах – овсянице красной, полевице тонкой, лапчатке гусиной и других, а также на гидрофитах – ситнике, вейнике и пр. Они или гибли, изреживались, или переходили в состояние покоя. Усиливавшееся в засуху засоление почв послужило причиной массовой гибели от солевого отравления овсяницы красной. Во влажные годы, когда промачивание почвы привело к ее опреснению в верхних слоях, этот вид появился вновь. Высокие температуры и усиление аэрации почвы способствовали развитию бактерий-нитрификаторов и накоплению нитратов. Это стимулировало массовое размножение в разнотравье осота полевого, одуванчика бессарабского и некоторых других азотолюбивых видов. Когда энергия нитрификации вслед за увеличением влажности почв снизилась, эти виды, не выдержав конкуренции со злаками, перешли в угнетенное состояние.

    Изменения в фитоценозах были усилены при массовом размножении в 1953 г. нестадных саранчовых. Прямокрылые съели до 80–90 % массы мягколистных злаков: пырея, костра, типчака и др. У жестколистных колосняка, тростника и других они уничтожали всходы по мере их появления. В этот год бурно разрослось непоедаемое саранчовыми разнотравье, для которого была устранена конкуренция со стороны злаков. Последствия размножения саранчовых сказались и на соотношении злаков в последующие два года. В засушливые годы муравьи Lasius niger и Myrmica scabrinodis заселили, кроме возвышенностей, высохшие низинные луга, где начали земляную строительную деятельность, которая повлияла и на условия произрастания растений.

    Подобные многолетние изменения в составе ценозов имеют тенденцию повторяться вслед за периодическими локальными изменениями климата, которые связаны с изменением общей циркуляции атмосферы, обусловленной, в свою очередь, усилением и ослаблением солнечной активности. Вследствие многостепенной зависимости изменения в сообществах не прямо отражают ритмику космических процессов.

    Примером обратимых изменений фитоценозов, связанных с особенностями жизненного цикла растений-эдификаторов, могут быть преобразования в буковом лесу. Взрослые буки с плотно сомкнутыми кронами создают такую густую тень, что в лесу практически отсутствуют подлесок и травяной покров, а сеянцы буков пребывают в угнетенном состоянии и погибают. Когда старые деревья достигают предельного возраста и падают, через появившиеся «окна» на почву проникает солнечный свет и трогаются в рост молодые буки. Некоторое время древостой характеризуется разновозрастностью, пока не выпадут все старые деревья и не выйдут в первый ярус подросшие молодые буки, после чего вновь устанавливается практически одноярусная структура фитоценоза. Весь цикл занимает около двух с половиной столетий.

    9.4.2. Сукцессии и дигрессии

    Поступательные изменения в сообществе приводят в конечном счете к смене этого сообщества другим, с иным набором господствующих видов. Причиной подобных смен могут быть внешние по отношению к ценозу факторы, длительное время действующие в одном направлении, например возрастающее в результате мелиорации иссушение болотных почв, увеличивающееся загрязнение водоемов, усиленный выпас скота, вытаптывание лесопарков населением городов и т. п. Возникающие при этом смены одного биоценоза другим называют экзогенетическими. Если при этом усиливающееся влияние фактора приводит к постепенному упрощению структуры сообществ, обеднению их состава, снижению продуктивности, то подобные смены называют дигрессионными или дигрессиями.

    Так, пастбищные дигрессии на террасовых песках Нижнего Днепра развиваются следующим образом. При умеренном выпасе степь находится на стадии дерновинных злаков. Преобладают типчак, кипец, житняк, ковыль. При дальнейшей усиленной пастьбе возникает стадия стержнекорневых двудольных с господством чаще всего молочая, а также двулетников и однолетников. Дерновинки злаков разбиваются копытами скота, а затем почти совершенно исчезают. На третьей стадии корневищных растений появляются злаки, характерные для сыпучих и слабозаросших песков: песчаный пырей, вейник, осока песчаная. На следующей стадии возникают голые пески с отдельными зарослями псаммофитов, характерных для предыдущего этапа. Таким образом, ковыльно-типчаковая степь сменяется сыпучими песками. Соответственно меняется и характер животного населения.

    Эндогенетические смены возникают в результате процессов, происходящих внутри самого сообщества. Закономерный направленный процесс изменения сообществ в результате взаимодействия живых организмов между собой и окружающей их абиотической средой называют сукцессией.

    Причины возникновения сукцессии. Сукцессия (от лат. successio– преемственность, наследование) – это процесс саморазвития сообществ. В основе сукцессии лежит неполнота биологического круговорота в данном ценозе. Каждый живой организм в результате жизнедеятельности меняет вокруг себя среду, изымая из нее часть веществ и насыщая ее продуктами метаболизма. При более или менее длительном существовании популяций они меняют свое окружение в неблагоприятную сторону и в результате оказываются вытесненными популяциями других видов, для которых вызванные преобразования среды оказываются экологически выгодными. Таким образом, в сообществе происходит смена господствующих видов. Длительное существование биоценоза возможно лишь в том случае, если изменения среды, вызванные деятельностью одних организмов, точно компенсируются деятельностью других, с противоположными экологическими требованиями.

    В ходе сукцессии на основе конкурентных взаимодействий видов происходит постепенное формирование более устойчивых комбинаций, соответствующих конкретным абиотическим условиям среды. Примерами сукцессий могут быть смены видов при зарастании стоячих водоемов (рис. 153) или барханных песков в пустыне.



    Рис. 153. Изменение экосистемы в ходе сукцессии при зарастании озера (по Д. Казенс, 1982): 1–6– смена доминирующих видов растений


    Сыпучие барханные пески Каракумов и других районов Средней Азии сначала полностью лишены растительности и постоянного населения животных. Первым на них поселяется многолетний злак аристида, хорошо приспособленный к жизни в условиях постоянного переноса песка ветром. Корни у этого растения шнуровидные, и каждый заключен в чехол из сцементированных песчинок, что защищает корни от высыхания и механического повреждения, если они окажутся на поверхности. Побеги растут вертикально вверх и образуют дополнительные зоны кущения выше материнского, если песок засыпает растение. За счет аристиды уже могут существовать некоторые насекомые, и поэтому на барханы начинают забегать в поисках пищи ящерицы рода Eremias. На слегка скрепленных корнями аристиды песках получает возможность поселиться длиннокорневищная песчаная осока. Она успешно борется с песком, быстро прорастая сквозь его наносы и пронизывая песок ветвящимися корневищами на глубине 1–5 см. Покров разрежен, так как для обеспечения влагой одного растения нужна значительная площадь. На скрепленных злаками и осокой песках поселяются затем кустарники джузгун и белый саксаул, а также другие травянистые растения, в основном эфемеры: злаки, крестоцветные, мотыльковые, бурачниковые и т. п. Вслед за растительностью появляются растительноядные млекопитающие: тонкопалый суслик, мохноногий тушканчик, полуденная песчанка. Увеличивается видовое разнообразие насекомых – кормовой базы ящериц: ушастой и песчаной круглоголовок, сетчатой ящурки, гекконов. Появляются птицы – саксаульная сойка, дрофа-красотка, затем змея и хищные млекопитающие. Закрепленные пески Средней Азии отличаются большим видовым богатством и разнообразием жизненных форм растений и животных, так как водный режим их достаточно благоприятен: пески обладают способностью сгущать водяные пары в почве во влагу.

    Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией.

    Сукцессии в природе чрезвычайно разномасштабны. Их можно наблюдать в пробирках с сенным настоем, где сменяют друг друга разные виды микроорганизмов и простейших (рис. 154), в лужах и прудах, в одной и той же порции листового опада в лесу, где происходят закономерные смены сапрофитов и сапрофагов, на стволах отмирающих деревьев, в пнях, на кротовинах, выбросах из нор сурков, зарастающих отмелях, выветривающихся скалах, на заброшенных пашнях, насыпях, на болотах, лугах, в лесах и т. д. Иерархичность в организации сообществ проявляется и в иерархичности сукцессионных процессов: более крупные преобразования биоценозов складываются из более мелких. Даже в стабильных экосистемах с хорошо отрегулированным круговоротом веществ постоянно осуществляется множество локальных сукцессионных смен, поддерживающих сложную внутреннюю структуру сообществ.



    Рис. 154. Смена простейших в сенном настое (по Р. Дажо, 1975):

    А – общая схема;

    Б – конкретная серия:

    – жгутиковые; 2 – инфузории кольноды; 3 – нарамеции; 4 – брюхо-ресничные инфузории; 5 – амебы; 6 – сувойки



    Типы сукцессионных смен. Выделяют два основных типа сукцессионных смен: 1) с участием как автотрофного, так и гетеротрофного населения и 2) с участием лишь гетеротрофов. Сукцессии второго типа совершаются только в таких условиях, где создается предварительный запас или постоянное поступление органических соединений, за счет которых существует сообщество: в сильно загрязненных органическими веществами водоемах, в скоплениях разлагающейся растительной массы, в кучках или буртах навоза, компостах, в пещерах с гуано летучих мышей и т. п. (рис. 155).



    Рис. 155. Изменение численности разных групп микроартропод в ходе сукцессии при разложении растительных остатков клевера (А), картофельной ботвы (Б), ячменя (В) в пересчете на 100 г сухого органического вещества (по Н. М. Черновой, 1977): 1 – панцирные клещи; 2 – клещи-аноетиды; 3 – гипопусы аноетид; 4 – тироглифоидные клещи; 5 – их гипопусы; 6 – коллемболы; 7 – прочие группы


    Сукцессии со сменой растительности могут быть первичными и вторичными.

    Первичные сукцессии начинаются на лишенных жизни местах – на скалах, обрывах, наносах рек, сыпучих песках и т. п. При заселении таких участков живые организмы необратимо меняют местообитание и сменяют друг друга. Основная роль принадлежит накоплению отмерших растительных остатков или продуктов разложения, что зависит как от характера растительности, так и от комплекса разрушителей мертвой растительной массы – животных, грибов и микроорганизмов. Постепенно формируется почвенный профиль, изменяется гидрологический режим участка, его микроклимат. Такие сукцессии в геоботанике называют экогенетическими, так как они ведут к преобразованию самого местообитания.

    В первичных сукцессиях, протекающих на скалах в лесах Урала, различают четыре этапа.

    1. Поселение эндолитических и накипных лишайников, которые сплошь покрывают каменистую поверхность. Накипные лишайники несут своеобразную микрофлору и содержат богатую фауну простейших, коловраток и нематод. Мелкие клещи-сапрофаги и первичнобескрылые насекомые обнаруживаются сначала только в трещинах. Активность всего населения прерывиста, в основном после смачивания скал дождем или туманом.

    2. Преобладание листоватых лишайников, постепенно образующих сплошной ковер. Под круговинками лишайников Parmelia в результате действия выделяемых ими кислот и механического сокращения слоевищ при высыхании образуются выщербленности, идет отмирание слоевищ и накопление детрита. Под лишайниками в большом количестве обитают мелкие членистоногие: коллемболы, панцирные клещи, сеноеды, личинки комаров-толкунчиков и другие, образуется микрогоризонт, состоящий из их экскрементов.

    3. Поселения литофильных мхов Hedwigia ciliata и Pleurozium schreberi. Они погребают лишайники и подлишайниковые пленочные почвы. Ризоиды мхов прикрепляются не к камню, а к мелкозему, мощность которого достигает уже 3 см. Под мхами колебания температуры и влажности уже в несколько раз меньше, чем под лишайниками. Усиливается деятельность микроорганизмов, и увеличивается разнообразие групп животных.

    4. Появление гипновых мхов и сосудистых растений. В разложении растительных остатков и формировании почвенного профиля постепенно уменьшается роль мелких членистоногих и растет участие более крупных беспозвоночных-сапрофагов: энхитреид, дождевых червей, личинок насекомых.

    Вторичные сукцессии представляют собой восстановительные смены. Они начинаются в том случае, если в уже сложившихся сообществах частично нарушены установившиеся взаимосвязи организмов, например удалена растительность одного или нескольких ярусов (в результате вырубки, пожара, вспашки и т. д.). Смены, ведущие к восстановлению прежнего состава ценоза, получили в геоботанике название демутационных. Примером может служить демутация залежей в Абаканских степях, происходящая в четыре основных этапа: 1) преобладание однолетних сорняков – на 1-2-й год после вспашки; 2) господство «крупного бурьяна», преимущественно разных полыней – на 3-4-й год; 3) вытеснение их корневищными злаками (пыреем и др.) и появление большого количества бобовых – начиная с 5-го года; 4) установление господства степных дерновинных злаков с появлением ковыля – на 11-12-й год после вспашки.

    Восстановительные смены совершаются быстрее и легче, чем экогенетические, так как в нарушенном местообитании сохраняются почвенный профиль, семена, зачатки и часть прежнего населения и прежних связей. Демутации не являются повторением какого-либо этапа первичных сукцессии.

    Частными вариантами сукцессии являются смены, которые по продолжительности точно совпадают с каким-либо сезоном, а на следующий год начинаются сначала. Эти «сезонные» сукцессии выглядят как обычная фенологическая смена форм, но природа их иная. Например, в планктоне северных морей весной массовое размножение водорослей сменяется волной размножения рачков-калянусов, затем в большом количестве появляются гребневики, а после них – некоторые виды рыб. Эти смены происходят как постепенное развертывание в течение короткого северного лета единой гигантской трофической цепи организмов, так как каждая последующая группа питается за счет предыдущей. Если же в силу неблагоприятной ситуации не возникает, например, весной массовое размножение фитопланктона, то и все последующие группы будут угнетены, несмотря на благоприятные сочетания любых прочих факторов в период обычного появления группы.

    Своеобразный вариант смен представляют поточные, или конвейерные, сукцессии. Они развиваются в подвижной среде: реках, потоках, круговоротах водных масс в океанах. Планктонные сообщества, увлекаемые водой, на разных стадиях развития оказываются в разных географических точках, а в одном и том же регионе постоянны по составу. Такой же конвейерный тип преобразований наблюдается, например, в лесной подстилке (рис. 156). В разных ее подгоризонтах: верхнем рыхлом слое опада, среднем спрессованном «ферментативном» подгоризонте и нижнем, полностью переработанном муллевом слое – существует постоянная значительная разница в многочисленном микронаселении. Но в каждой конкретной порции опада, поступающего сверху, происходит сукцессионная смена микроорганизмов, простейших, нематод и мелких членистоногих, обеспечивающая все более глубокое разложение растительных остатков. Опад вместе со всем населением постепенно занимает все более глубокое положение, захораниваясь под новыми поступлениями, а общая стратификация подстилки выглядит неизменной.



    Рис. 156. Аналогии в сменах жизненных форм мелких членистоногих в изолированном опаде (вверху) и верхних слоях почвенного профиля (внизу) (по Н. М. Черновой, 1977):

    1– поверхностные формы микроартропод;

    2– полупочвенные микроартроподы;

    3– почвенные формы


    Процесс сукцессии. Процесс сукцессии, по Ф. Клементсу, состоит из нескольких этапов: 1) возникновения незанятого жизнью участка; 2) миграции на него различных организмов или их зачатков; 3) приживания их на данном участке; 4) конкуренции их между собой и вытеснения отдельных видов; 5) преобразования живыми организмами местообитания, постепенной стабилизации условий и отношений.

    В настоящее время практически вся доступная жизни поверхность суши занята различными сообществами, и поэтому возникновение свободных от живых существ участков имеет локальный характер. Это или места, освободившиеся в результате отодвигания ледников, отступания уреза воды в водоемах, обвалов, эрозии и т. п., или возникшие в результате деятельности человека, например выноса наверх больших масс глубинных пород при разработке полезных ископаемых.

    Занос спор, семян растений, проникновение животных на освободившийся участок имеют большей частью случайный характер и зависят от того, какие виды есть в окружающих биотопах. Из числа видов, попавших в новое местообитание, приживаются лишь те, экологическая валентность которых соответствует данному комплексу абиотических условий. Прижившиеся виды постепенно занимают весь новый биотоп, вступая в конкуренцию друг с другом. В результате происходит перестройка видового состава и количественных соотношений разных форм. Параллельно идет процесс преобразования самого местообитания под влиянием развивающегося сообщества. Процесс завершается формированием более или менее стабильной системы с уравновешенным типом биологического круговорота.

    Сукцессии любого масштаба и ранга характеризуются целым рядом общих закономерностей, многие из которых чрезвычайно важны для практической деятельности человека.

    В любой сукцессионной серии темпы происходящих изменений постепенно замедляются. Конечным итогом является формирование относительно устойчивой стадии – климаксового сообщества, или климакса. Начальные, пионерные группировки видов отличаются наибольшей динамичностью и неустойчивостью. Климаксовые же экосистемы способны к длительному самоподдерживанию в соответствующем диапазоне условий, так как приобретают такие черты организации биоценозов, которые позволяют поддерживать сбалансированный круговорот веществ.

    В ходе сукцессии постепенно нарастает видовое многообразие. Это ведет к усложнению связей внутри ценоза, разветвлению цепей питания и усложнению трофической сети, умножению симбиотических отношений, усилению регуляторных возможностей внутри системы. Тем самым уменьшается вероятность слишком сильного размножения отдельных видов и снижается степень доминирования наиболее массовых форм.

    Чрезвычайное увеличение численности отдельных видов возможно чаще всего на начальных этапах развития сукцессионных серий, когда еще в недостаточной мере сложилась система взаимного регулирования. В незрелых сообществах, т. е. находящихся в начале сукцессионных рядов, преобладают мелкоразмерные виды с короткими жизненными циклами и высоким потенциалом размножения, специализированные на быстром захвате освободившегося пространства. Они обычно обладают широкими расселительными возможностями, позволяющими им первыми проникать на незанятые участки, но малоспособны к конкуренции и длительному удержанию за собой пространства.

    Постепенно в развивающихся сообществах появляются и закрепляются более крупные формы с длительными и сложными циклами развития. Нарастание экологического разнообразия ведет к более четкому распределению групп организмов по экологическим нишам. В растительном покрове становится сильнее выражена ярусность и мозаичность, создающие основу пространственной структуры наземных экосистем. Усиливается зависимость успешного существования одних видов от биохимических выделений, роста или поведения других: преобладание конкурентных взаимоотношений сменяется преобладанием мутуалистических и трофических зависимостей.

    В результате сообщества приобретают известную степень автономности и независимости от окружающих условий, не подчиняя свою жизнь флюктуациям внешней среды, а вырабатывая собственные эндогенные ритмы.

    Не меньшие преобразования происходят и в энергетическом балансе системы (рис. 157). С энергетических позиций сукцессия – такое неустойчивое состояние сообщества, которое характеризуется неравенством двух показателей: общей продуктивности и энергетических трат всей системы на поддержание обмена веществ.



    Рис. 157. Изменение энергетических показателей сообществ при развитии соснового леса (вверху) и лабораторной культуры простейших в сенном настое (внизу) (по Ю. Одуму, 1975):

    Пв – продукция валовая; Д – траты на дыхание; Пч – продукция чистая (заштриховано); Б – биомасса


    В ходе сукцессии общая биомасса сообщества сначала возрастает, но затем темпы этого прироста снижаются, и на стадии климакса биомасса системы стабилизируется. Это происходит потому, что на первых этапах сукцессии, когда видовой состав сообществ еще беден и пищевые цепи коротки, не вся часть прироста растительной массы потребляется гетеротрофами. Таким образом, относительно высока чистая продукция сообщества, которая идет на увеличение его биомассы. Накапливаются как общая масса живых организмов, так и запасы мертвого, неразложившегося органического вещества. В зрелых, устойчивых экосистемах практически весь годовой прирост растительности поступает и расходуется в цепях питания гетеротрофами, поэтому чистая продукция биоценоза, его «урожай», приближается к нулю.

    Биогенные элементы растения сначала черпают из запасов почвы, но постепенно, по мере истощения этих запасов и накопления в системе мертвого органического вещества, разложение его становится основным источником минерального питания растений, и круговороты биогенных веществ из открытых превращаются в закрытые.

    Неравенство трат энергии на образование первичной продукции и суммарный метаболизм (дыхание) сообщества проявляется в тех сукцессиях, в которых участвуют только гетеротрофные организмы. В этом частном случае первичная продукция равна нулю, и если приток мертвого органического вещества, за счет которого существует сообщество, не восполняет запасы в системе, то сообщество вскоре истощает свою энергетическую базу.

    С удлинением цепей питания увеличивается эффективность использования поступающей энергии, иначе – КПД всей системы, так как одна и та же порция энергии идет на поддержание большого количества биомассы. Знание этих закономерностей имеет большое значение в практической деятельности человека.

    Изымая избыток чистой продукции из биоценозов, находящихся в начале сукцессионных рядов, мы задерживаем сукцессию, но не подрываем основу существования сообщества. Вмешательство же в стабильные, климаксовые системы, с большой полнотой расходующие энергию на «свои» нужды, неминуемо вызывает нарушения сложившегося равновесия. Пока нарушения не превышают самовосстановительной способности ценоза, возникающие демутационные смены могут вернуть его к исходному состоянию. Этим пользуются, например, при рациональном планировании рубок леса. Но если сила и частота воздействия выходят за рамки этих возможностей, то первоначально устойчивое, богатое видами сообщество постепенно деградирует, сменяясь производными с малой способностью к самовозобновлению.

    Вырубка леса на локальных участках с оставлением части территории под коренными типами лесной растительности вызывает ускоренные сукцессии, исходные фитоценозы восстанавливаются за относительно короткий срок – немногие десятилетия. Сплошные же рубки на больших площадях, особенно если используется мощная корчевальная техника, полностью разрушают не только лесное сообщество, но и весь почвенный покров, эволюция которого шла тысячелетия. В этом случае сукцессии приводят к иным, упрощенным типам сообществ, и на месте лесов возникают пустоши, болота или другие малопродуктивные экосистемы.

    Таким образом, сообщество не может одновременно сочетать два противоположных свойства: быть высокостабильным и давать большой запас чистой продукции, который можно было бы изымать без вреда для самого ценоза.

    Сукцессии, протекающие при разложении органического вещества в почве, лежат в основе биологического круговорота. Это естественные регуляторные процессы, восстанавливающие нормальное состояние нарушенных почв. Такие проблемы века, как подрыв естественного плодородия в результате нарушения процессов образования гумуса, загрязнение среды ядохимикатами и органическими отходами, эрозия, «утомление почв» и другие отрицательные явления, возникли вследствие ослабления регуляторных возможностей почв.

    Стабильность экосистем, надежность протекания биологического круговорота веществ основаны на видовом разнообразии и полноте сукцессий.

    9.5. Агроэкосистемы

    Агроэкосистемы (сельскохозяйственные экосистемы), создаваемые человеком для получения высокой чистой продукции автотрофов (урожая), отличаются от природных рядом особенностей:

    1. В них резко снижено разнообразие организмов. На полях обычно культивируют один или немного видов растений, в связи с чем резко обедняется и животное население, и состав микроорганизмов в биоценозе. Выпас животных также сильно упрощает видовую структуру пастбищных сообществ. Культурные пастбища с подсевом трав приближаются по этому показателю к полям сельскохозяйственных растений. Видовое разнообразие разводимых человеком животных ничтожно мало по сравнению с природным.

    2. Виды, культивируемые человеком, поддерживаются искусственным отбором в состоянии, далеком от первоначального, и не могут выдерживать борьбу за существование с дикими видами без поддержки человека.

    3. Агроэкосистемы получают дополнительный поток энергии, кроме солнечной, благодаря деятельности людей, животных и механизмов, обеспечивающих необходимые условия роста культивируемых видов. Чистая первичная продукция (урожай) удаляется из экосистемы и не поступает в цепи питания. Частичное использование ее вредителями представляет нежелательное явление и всячески пресекается деятельностью человека.

    В настоящее время пахотными землями и пастбищами занято свыше 30 % суши, и деятельность людей по поддержанию этих систем превращается в глобальный экологический фактор.

    Несмотря на значительную упрощенность агроэкосистем, в них все же сохраняется множество биоценотических связей, в конечном счете влияющих на судьбу урожая (рис. 158). Сопоставление сведений о фауне и флоре пшеничных полей показывает гигантскую сложность даже предельно простого агроценоза, здесь сохраняется более тысячи видов.



    Рис. 158. Биоценотические связи на картофельном поле (по В. Тишлеру,1971): сплошные линии – виды, обитающие на растениях; пунктирные – виды, обитающие на поверхности почвы; утолщенные линии – доминирующие виды


    История формирования ценотических группировок, связанных с основными сельскохозяйственными культурами, насчитывает немногие сотни лет. Буквально на глазах человека формируются сообщества, приспособленные к жесткому прессу агротехнических режимов, с широким размахом колебательных циклов в жизни популяций, с четко отобранным кругом доминантов. Наглядно проявляются эволюционные сдвиги в экологических характеристиках и адаптивных показателях разных видов.

    Условия, которым в идеале должны соответствовать поля сельскохозяйственных культур, – быть высокопродуктивными и вместе с тем стабильными – с экологической точки зрения несовместимы. В природных экосистемах первичная продукция растений потребляется в многочисленных цепях питания и вновь возвращается в виде минеральных солей и углекислого газа в систему биологического круговорота. Ограждая урожай от его природных потребителей, отчуждая его и заменяя естественный опад органическими и минеральными удобрениями, мы обрываем множество цепей питания и дисбалансируем сообщество. По существу, все усилия по созданию высокой чистой продукции отдельных культур в пользу человека есть борьба «против природы», которая требует большой затраты труда и материальных средств.

    Вместе с тем агроценозы выступают гигантской лабораторией, где человек учится, используя отдельные звенья системы, управлять продукционным процессом и круговоротом веществ, регулировать численность популяций. Тщательное изучение таких относительно упрощенных систем, как агроценозы, вносит серьезный вклад в развитие общей биоценологии. В обедненных сообществах более резко вырисовываются те законы, которые лежат в основе объединения живых существ в надорганизменные системы. Богатый арсенал агротехнических средств, имеющийся на вооружении современного сельского хозяйства, позволяет экспериментально и в широких масштабах проверять различные пути воздействия на сообщества, оценивать степень их устойчивости и прочность связей в отдельных звеньях.

    Все искусственно создаваемые в сельскохозяйственной практике экосистемы полей, садов, пастбищных лугов, огородов, теплиц и других агроценозов представляют собой системы, специально поддерживаемые человеком на начальных стадиях сукцессионных преобразований. В агроценозах используется именно свойство пионерных сообществ производить высокую чистую продукцию. Но такие сообщества и в природе неустойчивы, не способны к самовозобновлению и саморегулированию, подвержены угрозе гибели от массового размножения вредителей или болезней (рис. 159). Они требуют неустанной деятельности по их поддержанию со стороны человека.



    Рис. 159. Динамика численности насекомых в стеблестое овса (по Н. И. Куликову, 1985): 1– цикадки; 2 – их личинки; 3 – хлебный клопик; 4 – клопы-лигулы; 5 – хлебная полосатая блошка; 6 – жуки-блестянки; 7 – божьи коровки; 8 – паразитические перепончатокрылые; 9 – шведская муха; 10 – злаковые трипсы; 11 – злаковые тли; 12 – общая численность


    Сельскохозяйственное освоение территорий часто приводит к разрушению созданных природой механизмов регуляции численности отдельных видов и резким изменениям в уровне их обилия.

    В агроценозах чаще всего происходят «экологические взрывы», как назвал Ч. Элтон чрезмерное увеличение численности отдельных видов. Последствия этих «взрывов» могут быть весьма существенными для сельского и лесного хозяйства. Так, распространение патогенного грибка фитофторы из Европы в Ирландию в прошлом столетии погубило весь урожай картофеля, вызвав сильный голод. Во Франции более 1 млн га виноградников пришлось уничтожить в результате размножения корневой тли – филлоксеры.

    Искусственная регуляция численности вредителей – по большей части необходимое условие поддержания агроэкосистем. Это связано прежде всего с необходимостью подавления видов, вышедших из-под контроля естественных регуляторных механизмов. В ряде случаев даже полное сохранение естественной регуляции численности вида не удовлетворяет экономическим требованиям. Например, стабилизация численности яблонной плодожорки на уровне, при котором погибает большая часть урожая, с позиций естественного отбора не угрожает существованию яблони как вида. С хозяйственной же точки зрения необходимо резкое понижение уровня, на котором должна находиться численность плодожорки в садах. Поэтому в сельскохозяйственной практике применяют мощные средства подавления численности нежелательных видов: ядохимикаты, гербициды и т. д. Экологические последствия этих действий приводят, однако, к ряду нежелательных эффектов, кроме тех, для которых они применяются.

    Подавление численности вредителей химическими средствами, кроме загрязнения среды и включения ядов в цепи питания, часто вызывает так называемый «бумеранг-эффект»: вслед за подавлением численности вредителя вскоре возникает новая, еще более мощная его вспышка. Обычно применение ядохимикатов тотального действия сильнее влияет на естественных врагов вредителя, чем на его собственные популяции. В результате следующие поколения полностью освобождаются из-под пресса паразитов и хищников и осуществляется их массовое размножение. Таким образом, недоучет биоценотических механизмов регуляции численности на полях сельскохозяйственных культур также не в экономических интересах человека. В трехзвенной цепи: культурное растение – вредитель – паразит повышение чистой продукции растений может быть достигнуто как подавлением второго звена, так и усилением третьего. Именно этот подход используется в разработке биологических методов борьбы с вредителями.

    В отношении к сообществам, складывающимся в агроэкосистемах, в связи с общим развитием экологических знаний постепенно меняются акценты. На смену представлениям об обрывочности, осколочности ценотических связей и предельной упрощенности агроценозов возникает понимание их сложной системной организации, где человек существенно влияет лишь на отдельные звенья, а вся система продолжает развиваться по естественным, природным законам (рис. 160).



    Рис. 160. Фазовая приуроченность насекомых-вредителей на посевах озимой пшеницы (по Н. И. Куликову, 1985):

    1– злаковые тли; 2 – цикадка шеститочечная; 3 – цикадка полосатая; 4 – клопы-лигусы; 5 – хлебный клопик, 6 – злаковые трипсы; 7 – хлебная полосатая блошка; 8 – ростковая муха; 9 – яровая муха; 10 – шведская муха


    Современные представления плодотворны и в теоретическом, и в практическом плане. Они стимулируют поиск внутренних регуляторных резервов агроценозов, использование которых позволяет не допускать массового размножения вредителей и негативных последствий химической борьбы с ними. В создании оптимальной структуры культурных фитоценозов также кроются новые возможности увеличения пределов первичной продукции. Изучение основных законов организации и пределов стабильности агроценозов дает теоретической экологии уникальный материал.

    С экологических позиций крайне опасно упрощать природное окружение человека, превращая весь ландшафт в агрохозяйственный. Основная стратегия по созданию высокопродуктивного и устойчивого ландшафта должна заключаться в сохранении и умножении его многообразия. «Если дикая природа отступает, – писал Ч. Элтон, – мы должны научиться передавать часть ее стойкости и богатства ландшафтам тех земель, с которых мы снимаем наши урожаи». Наряду с поддержанием высокопродуктивных полей следует особенно заботиться о сохранении как можно более многообразных заповедных, не подвергающихся усиленному антропогенному воздействию участков разного масштаба, с богатым видовым разнообразием, которые могли бы быть источником видов для восстанавливающихся в сукцессионных рядах сообществ. Эксплуатация ценных для человека природных систем не должна превышать их способности к самовосстановлению. Аграрный ландшафт должен быть разнообразным, с лесными полосами вокруг полей, живыми изгородями и перелесками.

    Идея плановой реконструкции сельскохозяйственных ландшафтов родилась в нашей стране и связана с именами В. В. Докучаева и А. И. Воейкова. В настоящее время эти идеи приобретают особый экологический смысл, так как входят составной частью в общую стратегию охраны природы, окружающей человека.









    Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное

    Все материалы представлены для ознакомления и принадлежат их авторам.