Онлайн библиотека PLAM.RU


  • 1. ВРЕМЯ
  • 2. КЛАССИЧЕСКАЯ ДИНАМИКА И ЕЕ ГЕОМЕТРИЯ
  • 3. «ВЫВОД» КЛАССИЧЕСКОЙ ДИНАМИКИ ИЗ СВОЙСТВ ПРОСТРАНСТВА
  • 4. ПРОСТРАНСТВО СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ(ПРОСТРАНСТВО МИНКОВСКОГО)
  • 5. ЭЙНШТЕЙНОВСКАЯ ТЕОРИЯ ТЯГОТЕНИЯ
  • 6. ОБЪЕДИНЕННАЯ ТЕОРИЯ ВЗАИМОДЕЙСТВИЙ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
  • 7. КАЛИБРОВОЧНАЯ ИНВАРИАНТНОСТЬ ОСНОВНОЙ ДИНАМИЧЕСКИЙ ПРИНЦИП
  • 8. ГЕОМЕТРИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СОСТОЯНИЙ
  • 9. МНОГОМЕРНАЯ ИНТЕРПРЕТАЦИЯ ВЗАИМОДЕЙСТВИЙ
  • 10. ПЛАНКОВСКАЯ ФИЗИКА. ЯВЛЯЕТСЯ ЛИ ТОЧКА ОСНОВНЫМ ЭЛЕМЕНТОМ ФИЗИЧЕСКОЙ ГЕОМЕТРИИ?
  • ГЛАВА 2. Д И Н А М И К А

    1. ВРЕМЯ

    Классическая геометрия (Евклида, Лобачевского, Римана) по своему существу статична. И хотя в ее пределах правомочна операция переноса фигур, но она имеет лишь одно предназначение: установление их равновеликости. Поэтому этот перенос (как правило, мысленный) может осуществляться бесконечно быстро или сколь угодно медленно. Скорость переноса, а следовательно, и его время геометров не интересовали. Геометрия была вне времени. Видимо, время было тем фактором, который более всего способствовал тому, что до конца прошлого столетия геометрия и физика существовали раздельно.

    Можно точно указать годы, когда зарождалось представление об общности геометрии и времени и когда это представление приобрело ясную и недвусмысленную формулировку. Идея единства пространства-времени была сформулирована Г.Минковским в 1907 г., ей предшествовало создание специальной теории относительности А.Эйнштейном, А.Пуанкаре и Х.Лоренцом в 1904–1905 гг.

    Разумеется, нельзя абсолютизировать (даже в историческом плане) утверждение о независимости геометрии и времени. Геометрические образы — неизменное сопровождение механики, а время — ее основополагающее понятие. Как только возникало слово «время», так от классической, дорелятивистской геометрии следовал переход к динамике. Время — неизбежный спутник динамики.

    После создания теории относительности статус времени существенно изменился: оно стало равноправным партнером пространства. Возникла новая геометрия — геометрия пространства-времени. После создания общей теории относительности (ОТО, 1915–1916 гг.) геометрия и динамика в рамках ОТО слились воедино.

    После краткого вступления уместно задать вопрос: что такое время? Казалось бы, что ответ на этот вопрос ясен; достаточно использовать какое-либо признанное определение, заимствованное из бесчисленного количества книг, посвященных пространству-времени или исключительно времени. Имея в виду такое решение, автор обратился к двум современным, специально посвященным времени изданиям: книгам Ф.С.Заславского «Время и его измерение» (М.: Наука, 1977) и Дж. Уитроу «Структура и природа времени» (М.: Знание, 1984). В этих книгах можно найти множество интересных сведений. Например, о представлении времени у обезьян и небольших индейских племен, о методах измерения времени в древности и в эпоху средневековья, есть здесь и мысли древних философов о времени, и многое другое. Однако предмет поиска определение физического времени — в этих книгах отсутствовал.

    Разумеется, можно было бы продолжить поиски единственного и правильного определения, однако после зрелого размышления сделалась очевидной их бессмысленность. Представилось очевидным, что определение времени — задача совсем не простая. Вероятно, не худшим выходом было решение упомянутых выше авторов книг о времени сделать вид, что вопроса не существует.

    Тем не менее кажется необходимым дать если не определение, то по крайней мере описание понятия физического времени. Известно, что определить понятие означает подвести под него другое более широкое понятие. Но время — настолько широкая категория, что, быть может, лишь Вселенная и материя являются более объемными понятиями. Не претендуя, разумеется, на единственность и абсолютную правоту приведенного далее определения, можно все же сделать попытку в этом направлении.

    Итак, физическое время — это количественная мера упорядоченной эволюции материального объекта как целого от его возникновения до гибели.

    Это определение нуждается в пояснениях, из которых естественно следует, что лаконичность — не синоним простоты. В определениях неявно фигурируют следующие допущения.

    1. Объект характеризуется целостностью в том смысле, что у него есть единое время.

    2. У каждого объекта собственное время, которое, вообще говоря, не совпадает с временем других объектов.

    3. Все объекты рождаются и умирают.

    Требует пояснения также и понятие «упорядоченной эволюции».

    Начнем комментарии по порядку.

    1. Макроскопический объект, т. е. тело, состоящее из нескольких (?2) частей, априорно не должно характеризоваться единым временем. Наш повседневный опыт как будто подтверждает существование единого времени, характеризующего эволюцию объекта как целого. Однако такое заключение несколько иллюзорно и связано с тем, что в рамках повседневного опыта относительная скорость v отдельных частей макроскопического тела удовлетворяет условию v/c << 1 (c — скорость света). Если v/c ~ 1, то в соответствии с теорией относительности каждая часть тела обладает своим собственным временем. Однако при обычных скоростях условие v/c << 1 выполняется, и постулат о целостности достаточно оправдан.

    2. В соответствии со сказанным ранее два тела можно рассматривать как составные части одного, и, следовательно, они характеризуются своим собственным временем. Однако наша Метагалактика во всех ее частях характеризуется единым временем в том смысле, что в любой момент все свойства (характеристики) Метагалактики одинаковы.

    3. Постулат о рождении и смерти всех всех объектов является следствием опытных данных. Рождается и погибает все, начиная от элементарных частиц и кончая галактиками и их скоплениями. Исключение составляет Метагалактика в целом, в том смысле, что никто не наблюдал ни ее начала, ни конца. Но никто из специалистов не сомневается в том, что когда-то (примерно (15–20)*10**9 лет назад) было рождение Метагалактики и когда-то ее не станет.

    Таким образом, все сформулированные постулаты выполняются с достаточной точностью. Более того, из комментария ко второму допущению следует, что <(существует единое метагалактическое время, которое можно принять за эталон времени всех находящихся в ней объектов)>. Если бы дело обстояло иначе, Метагалактика не обладала бы однородностью во всех ее точках и время протекало бы по-разному в разных ее частях, что, вероятно, привело бы к различию в физических закономерностях, а это, в свою очередь, к нарушению мировой гармонии и путанице невообразимому усложнению физических законов.

    Особого анализа требует понятие упорядоченной эволюции. Ясно, что рождение предшествует смерти, причина — следствию. Причинно-следственные связи реализуются в том, что время имеет определенное направление от прошлого к будущему. Время является одномерным вектором, направленным от прошлого к будущему. Бытовая реализация этой основной характеристики сводится к делению времени на три относительные эпохи: прошлое, настоящее и будущее. Для единого тела, характеризуемого единым временем, это деление абсолютно, и его можно провести всегда. Для тела, состоящего из частей, это деление усложняется: вследствие конечности скорости света существует отрезок времени, когда четкое разделение провести нельзя (см. разд.4 гл.2).

    Любопытно, как проблема деления времени на прошлое, настоящее и будущее нашла отражение в афоризме Аристотеля: «Времени почти нет, ибо прошлого уже нет, будущего еще нет, а настоящее длится мгновение». Прошлого действительно нет, оно — было, так же как и будущее — будет. Об этом свидетельствуют многочисленные эмпирические факты, относящиеся к компетенции физики. Строго говоря, Аристотель ошибся, утверждая о существовании настоящего (хотя бы и мимолетного), понимаемого в эйнштейновском смысле. Как уже говорилось, для сложных тел нет абсолютного времени, а следовательно, о настоящем можно говорить лишь условно, в пределах неопределенности, определяемой разностью времен для частиц, составляющих сложное тело.

    Подведем некоторые итоги. Можно дать краткое определение физического времени. Однако оно содержит понятия, сами нуждающиеся в доопределениях, которые, в свою очередь, требуют разъяснений, и так ad infinitum. Вероятно, такая ситуация — отражение фундаментальности времени. Тем не менее дать пусть даже неполное определение времени было необходимо. Иначе трудно (или, скорее, невозможно) обсуждать взаимосвязи пространства-времени и динамики.

    И в заключение еще одно замечание. Существует вопрос, который на разном уровне обсуждается в литературе: можно ли выделить начало отсчета времени. Этот вопрос задавался практически со времени возникновения цивилизации. Как правило, начало отсчета связывалось с предполагаемым актов рождения мира. У народов Ближнего Востока начало отсчета (рождение мира) полагается 6–8 тыс. лет назад. Более рационально мыслящие римляне точку отсчета отождествляли с основанием Рима (753 г. но н. э.). На Западе сейчас повсеместно летоисчисление ведут от предполагаемого дня рождения Христа, которое было «вычислено» римским монахом Дионисием в 524 г., а затем канонизировано.

    Для нас, пожалуй, важен не калейдоскоп начал отсчета или эпох, а другой факт, имеющий глубокий смысл. Как человеческая история, так и физические явления не зависят от точки отсчета времени. В этом отражается его исключительно важное свойство — трансляционная инвариантность: независимость физических законов от точки отсчета. На языке математики эта инвариантность означает неизменность физических законов при преобразовании типа

    t' — > t+a, a=const (11)

    Мы, со своей стороны будет стараться по возможности придерживаться «физического» летоисчисления, принимая за точку отсчета (t=0) время возникновения Метагалактики (15–20 млрд лет назад). Иногда в физической литературе этот момент отождествляется с временем возникновения Вселенной. Встречаются также утверждения, что вообще говорить о времени до возникновения Метагалактики (при t<0) бессмысленно. Нам представляется, что эти утверждения неверны и далее (гл.3) мы приведем аргументы, подтверждающие нашу точку зрения.

    2. КЛАССИЧЕСКАЯ ДИНАМИКА И ЕЕ ГЕОМЕТРИЯ

    Предмет классической динамики (ньютоновской механики) определение изменения состояния (положение, скорость и т. д.) тел во времени. Абстрагируясь от влияния смежных физических дисциплин, можно сказать, что ньютоновская динамика занимается определением движения материальных точек при заданном положении внешних тел.

    Решение основной проблемы классической механики предполагает априорное определение физического пространства, в котором движутся материальные точки. В рамках ньютоновской физики оно отождествляется с пространством Евклида.

    Одна из задач механики — вычисление траектории тела (материальной точки) в этом пространстве.

    Траектория описывается математической кривой, однако не тождественна ей. Математическая кривая — образ, существующий безотносительно к другим объектам или системам координат. Этот образ возник задолго до создания аналитической геометрии. Иное дело — физическая траектория. Это понятие имеет лишь относительный смысл: траектория материальной точки определяется относительно другого тела, обычно называемого телом отсчета.

    Абсолютного движения не существует. По этой причине физики предпочитают говорить не о системе координат, а о системе отсчета, подразумевая, что это понятие включает также и тело отсчета. Если оно может быть отождествлено с материальной точкой, то его обычно принимают за начало координат. Подчеркнем, что здесь мы встречаемся не с терминологическими уточнениями. В отличие от начала координат тело отсчета, как правило, влияет, а иногда и определяет состояния исследуемого тела (материальной точки).

    В классической динамике пространство определяет взаиморасположение тел в данный момент времени в их противопоставлении к пустоте (в классическом смысле). Несколько перефразируя определение времени, данное в предыдущем разделе, можно сказать, что пространство есть мера неупорядоченной эволюции относительно состояния тела. Это определение, так же как и предшествующее, нуждается в некоторых комментариях.

    Пространственные соотношения характеризуют относительное положение материальных тел, включая и тело отсчета. Временные же соотношения также включают точку отсчета, но эта точка относится к тому же самому телу, время эволюции которого определяется.

    Но кардинальным физическим отличием пространства от времени является факт, что первое не содержит аналога принципа причинности. Расстояния между двумя произвольными точками A и B пространства (взятые безотносительно ко времени) эквивалентны: AB=BA. Временные же интервалы t|t| и

    1 2 t|t| (t| > t|) существенно неэквивалентны. Время t| 2 1 2 1 2 будущее относительно времени t. Иллюстрацией этих положений является система двух событий (At|, Bt|), причинно-связанных

    1 2 между собой. Событие At| влияет на событие Bt|, обратное

    1 2 влияние отсутствует. Однако тела, расположенные в точках A и B, симметричны. Их пространственная характеристика — вектор — > — > AB эквивалентен вектору BA.

    В основе ньютоновской механики находится понятие инерциальных систем отсчета, играющее особую роль, поскольку, строго говоря, законы Ньютона относятся именно к этому классу систем отсчета. К сожалению, как это часто бывает с основополагающими понятиями, определения инерциальной системы многообразны и не полностью отражают ее свойства, что может привести, а иногда и приводит к недоразумениям.

    Однако полный анализ понятия инерциальной системы отсчета выходит за рамки основной темы, и далее мы ограничимся лишь кратким его рассмотрением. Пока же примем наиболее популярное определение инерциальной системы отсчета, представленное в классическом курсе теоретической физики Л.Д.Ландау и Е.М.Лифшица:

    «…можно найти такую система отсчета, по отношению к которой пространство является однородным и изотропным, а время однородным. Такая система называется инерциальной».

    (Ландау Л.Д., Лифшиц Е.М. Курс теоретической физики. М., Наука, 1973. Т.1. Механика. С.14.)

    Из этого определения следует ограниченность понятия инерциальной система отсчета. Оно приложимо к (квази)точечным телам — материальным точкам. Макроскопическое тело, состоящее, по определению, из многих точечных тел, само выделяет из первичного пространства Евклида объем, нарушающий его однородность и изотропию. Следовательно, использование понятия инерциальной системы применительно к макроскопическим телам, вообще говоря, неоправданно. И действительно, существует ряд парадоксальных физических ситуаций (релятивистское преобразование температуры, выбор формы электромагнитного тензора энергии-импульса в макроскопических телах и т. д.), когда отсутствует однозначное решение четко и корректно сформулированной проблемы. На наш взгляд, эта неоднозначность обусловлена чрезмерно широким употреблением понятия инерциальной системы. Но подробнее обсуждение этой проблемы находится вне основной линии книги. Мы лишь во избежание недоразумений будем использовать инерциальные системы для (квази)точечных тел.

    Здесь уместно напомнить основные свойства инерциальных систем отсчета. В этих системах законы ньютона имеют наиболее простой вид (отсутствуют силы инерции). Все механические явления, происходящие в двух инерциальных системах, движущихся с постоянной скоростью друг относительно друга, протекают одинаково.

    Иначе говоря, законы движения в двух инерциальных системах координат инвариантны при переходе от одной системы отсчета к другой. Отмеченную инвариантность уместно выразить на языке линейных преобразований. Для простоты ограничимся двумерным евклидовым пространством. Пусть в инерциальной системе I точка (событие) представлена координатами xI, yI, а система II (координаты xII, yII) движется с постоянной скоростью v относительно системы I. Тогда из свойств евклидова пространства и инерциальных систем отсчета следует, что уравнения движения в этих системах должны быть инвариантны относительно замены:

    x| = x| cos ALPHA + y| sin ALPHA + vt cos BETA + a, 2 1 1

    y|= — x| sin ALPHA + y| cos ALPHA + vt sin BETA + b, (12) 2 1 1

    где ALPHA — произвольный угол поворота системы отсчета I, BETA — угол между направлениями O|O| и O|x|. Постоянные a и

    1 2 2 2 b отражают однородность (трансляционную инвариантность) евклидова пространства. Условие (12) является обобщением аналитического определения статического евклидова пространства. Евклидово пространство однородно и изотропно. Следовательно, при произвольном преобразовании декартовой системы координат осуществляются соотношения:

    x| = x| cos ALPHA + y| sin ALPHA + a, 2 1 1

    y|= — x| sin ALPHA + y| cos ALPHA + b, (13) 2 1 1

    Таким образом, инерциальные системы отсчета — основа динамики — являются обобщением статического евклидова пространства. Это обобщение отражается включением членов, содержащих множитель vt, обуславливающих равноправие всех инерциальных систем отсчета.[6]

    Пожалуй, интересно отметить, что в течение многих столетий доминировала механика, в которой допустимые преобразования представлялись соотношениями (13). Эта механика была унаследована от Аристотеля, который полагал, что любое движение (в том числе и равномерное) обусловлено внешним воздействием. Потому в рамках такой механики существовала единственная привилегированная система отсчета — та, к которой тело покоилось. Естественно, что геометрия, соответствующая подобной механике, была тождественна геометрии Евклида.

    Преобразование (12) подчеркивает особенность классической механики. Время t и скорость v никак не связаны с пространственными координатами и могут принимать любые значения. Поэтому, хотя пространство, представленное геометрией Евклида, имеет определенную метрику (в данном случае x**2 + y**2 = const), совокупность времени и пространственных координат такой определенной метрикой не обладает.

    3. «ВЫВОД» КЛАССИЧЕСКОЙ ДИНАМИКИ ИЗ СВОЙСТВ ПРОСТРАНСТВА

    Почти во всех учебниках физики характеристики пространства и уравнения движения излагаются независимо. Поэтому создается впечатление, переходящее в убеждение, о независимости этих основных элементов физики. В действительности же свойства пространства (евклидовость) практически предопределяют классическую динамику.

    Ограничимся (как условились ранее) анализом системы двух тел, одно из которых будем полагать телом отсчета, а другое материальной точкой, положение которой характеризуется вектором r и временем t. Из определения инерциальной системы отсчета следует, что они являются единственной привилегированной системой отсчета, поскольку она отражает наиболее общие свойства пространства изотропию и однородность. Для системы двух тел существует единственное выделенное направление — вектор r, соединяющий тело отсчета и материальную точку.` Поэтому все динамические и кинематические величины будут направлены вдоль вектора r. Обозначим меру воздействия на материальную точку символом Ф. По определению, воздействие, а следовательно и сила, инвариантно относительно равномерного движения инерциальной системы. Поскольку существует единственное выделенное направление r, то функция Ф определяется вектором r или его производными dr/dt, d**2 r/dt**2, d**3 r/dt**3… (предполагается, что они параллельны). Действие в принципе может зависеть от констант m|, m|…., характеризующих

    1 2 материальную точку

    dr d**2 r Ф = Ф (m|, m|…, r, — , ----…). (14)

    1 2 dt dt**2

    Однако при учете свойств инерциальной системы это выражение сильно упрощается. Действительно, в общем случае аргументы r и v = dr/dt исключаются вследствие эквивалентности инерциальных систем. Всегда можно выбрать систему, в которой в данный момент v=0. Производные высших порядков: d**3 r/dt**3, d**4 r/dt**4…. в общем виде также не могут определять движение, поскольку в этом случае, помимо выделенного класса систем отсчета (соответствующего v=const), существовали бы и другие привилегированные системы отсчета, удовлетворяющие условиям a = d**2 r/dt**2=const или b = d**3 r/dt**3=const и т. д. Поскольку рассматривается материальная точка, то естественно допустить, что она характеризуется единым параметром m=m|. Поэтому (14) можно

    1 записать в форме

    d**2 r Ф = Ф (m, — --). (15)

    dt**2

    Величина m — внутренняя характеристика тела, вторая производная d**2 r/dt**2 определяется взаиморасположением тела отсчета и материальной точки. В рамках ньютоновской механики обе величины абсолютно независимы. Поэтому естественно предположить, что они входят в выражение (14) в виде произведения

    d**2 r Ф = Ф (m —---). (16)

    dt**2

    Назовем силой функцию F, обратную функции Ф, тогда получаем основной закон

    d**2 r F = m —---. (17)

    dt**2[7]

    Из свойств пространства вытекают характеристики дальнодействующих сил, составляющих основу классической механики.

    Назовем дальнодействующими (макроскопическими) силами такие воздействия, которые в статическом случае (т. е. когда тело отсчета неподвижно) можно характеризовать силовыми линиями, начинающимися в теле отсчета, но не изменяющимися в пустом пространстве. Иными словами, в пустом пространстве силовые линии — прямые. Если же силовые пересекают материальную точку, то они взаимодействуют с ней, прекращая свое существование.

    Заметим, что «прямолинейность» силовых линий нетривиальное допущение, которое характерно исключительно для дальнодействующих сил. Для микроскопических взаимодействий силовые линии либо запутываются, взаимодействую друг с другом, утрачивая прямолинейность (сильное взаимодействие), либо обрываются (слабое взаимодействие). На современном языке необходимыми и достаточными условиями дальнодействия сил являются неравенства

    ALPHA << 1, m| = 0,

    c

    где ALPHA — безразмерная константа взаимодействия, m|

    c массам обменной частицы (см. Дополнение). Далее в этом разделе ограничимся исключительно дальнодействующими макроскопическими силами.

    Поскольку силовое воздействие является точечным и осуществляется в месте расположения материальной точки, то единственная характеристика сил, обусловленная этим расположением, есть плотность d силовых линий. Поэтому сила, действующая на материальную точку, пропорциональна плотности силовых линий: F~d. Но в силу изотропии и однородности пространства полное число силовых линий неизменно, а плотность силовых линий неизменно, а плотность силовых линий макроскопического взаимодействия обратно пропорциональна площади сферы с центром, расположенным в начале координат (теле отсчета). Эта сфера проходит через материальную точку. поскольку площадь сферы в трехмерном евклидовом пространстве пропорциональна r**2 (r — расстояние между телом отсчета и материальной точкой), то

    F~1/r**2. (19)

    Мы получили выражение для макроскопических сил: силы Кулона и силы Ньютона.

    Таким образом, оба закона — следствие особых свойств трехмерного евклидова пространства.

    Следовательно, как механика Ньютона, так и выражение для статических (классических) сил зависят от свойств пространства. Подчеркнем, что, несмотря на демонстрацию тесной связи основ динамики и свойств пространства, нельзя полностью свести физику к логическим умозаключениям, основанным не геометрии. Разумеется, лишь опыт может позволить заключить о макроскопичности данного типа сил. Можно (как это происходило в действительности) на опыте измерить зависимость (19), на более современном уровне установить соотношения (18), которые также являются следствием экспериментов.

    Однако общие соотношения отражают свойства пространства, и наша цель — демонстрация тесной связи этих свойств и простейшей динамики.

    4. ПРОСТРАНСТВО СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ(ПРОСТРАНСТВО МИНКОВСКОГО)

    Теории относительности посвящено огромное число книг, написанных на разных уровнях. Поэтому нецелесообразно представлять здесь систематическое изложение этой теории. Идея этого и следующего разделов несколько скромнее: очертить лаконично идею взаимосвязи геометрии и динамики, обусловленную созданием теории относительности, которая изменила сам стиль этой взаимосвязи. Ранее (в ньютоновской механике) эта взаимосвязь проявлялась как бы неявно: в определении инерциальной системы, мельком упоминалась при выводу законов сохранения и т. д. После утверждения теории относительности единство геометрии и динамики стало краеугольным камнем физики.

    Специальная теория относительности базируется на двух постулатах.

    1. Существует класс эквивалентных инерциальных систем отсчета. (Этот постулат оправдывается свойствами пространства: изотропией и однородностью.)

    2. Скорость света в пустоте постоянна и не зависит от движения его источника или приемника.

    К этому постулату, выдвинутому А.Эйнштейном в 1905 г., мы привыкли. А привычка часто является синонимом тривиальности. В действительности он связан с двумя нетривиальными допущениями. Во-первых, скорость света c не подчиняется обычному классическому правилу сложения скоростей: v| = v| + v| (v| — суммарная скорость, v|

    3 2 1 3 1 скорость источника, v| — скорость испущенной материи, в

    2 данном случае скорость света). И, во-вторых, этот постулат также связан с утверждением об евклидовости пространства. Отсутствие однородности или неизотропия пространства также привели бы к его нарушению. Физической иллюстрацией возможности подобного нарушения евклидовости является существование макроскопических тел и сильных (?10**13 Гс) электромагнитных полей. В областях, где находятся эти объекты, скорость света отличны от c. Поэтому при формулировании второго постулата особо подчеркивается свойство среды, в которой распространяется свет (пустота). Верные традиции этой книги, мы остановимся на простейшей системе, состоящей из тела отсчета и материальной точки (пробного тела).

    В математическом плане второй постулат специальной теории заключается в том, что время распространения света t между началом координат O и точкой (x, y, z) определяется уравнением

    (ct)**2 — x**2 — y**2 — z**2 = 0 (20)

    или в дифференциальной форме

    (cdt)**2 — dx**2 — dy**2 — dz**2 = 0 (21)

    Соотношения (20) и (21) кардинально отличаются от связи между пространством и временем в классической физике (см. (12)). В последнем соотношении пространственные и временные координаты выступают как независимые переменные. Равенства (20) и (21) жестко связывают пространство и время. Пространство и время образуют единый физико-математический континуум. Иногда (особенно в период ранних дискуссий о теории относительности) наиболее ревностные ее апологеты утверждали, что Эйнштейн и Минковский полностью уравняли пространство и время. Это утверждение неверно. В соотношениях (20) и (21) временная и пространственные координаты выступают с разными знаками, что отражает их фундаментальное различие: время (в отличие от пространства) — направленный вектор: существует принцип причинности, различающий будущее и прошлое.

    В соответствии с обозначениями дифференциальной геометрии выражение (21) записывается в форме

    ds**2 = (cdt)**2 — dx**2 — dy**2 — dz**2 = 0 (22)

    Второй постулат теории относительности можно сформулировать на геометрическом языке как утверждение, что для света (в пустоте) интервал ds**2 инвариантен относительно вращений и трансляций в 4-мерном континууме пространства-времени.

    Инвариантность интервала ds**2 нетрудно обобщить и на случай тела и системы отсчета, движущейся со скоростью v?c. Из опыта известно, что скорость света в пустоте максимальна. Поэтому это неравенство следует уточнить так: v

    Рассмотрим две инерциальные системы координат, движущиеся со скоростью v друг относительно друга. Из (22) следует, что если в одной системе координат ds=0, то и в другой ds'=0. Рассмотрим общий случай: v?c. Поскольку ds и ds' бесконечно малые одинакового порядка и при v — > c выполняется (22), то и в общем случае ds и ds' могут отличаться лишь постоянным множителем. Из изотропии и однородности пространства следует, что этот множитель равен 1`. Следовательно, интервал

    ds**2 = (cdt)**2 — dx**2 — dy**2 — dz**2 = const (23)

    относительно вращений и трансляций.[8]

    Геометрия, в которой интервал имеет вид (23), называется псевдоевклидовой. Из равенства малых интервалов следует также и инвариантность конечных интервалов.

    Инвариантность интервалов ds или s — математической отражение принципиально нового подхода к взаимосвязи пространства и времени. Пространство и время образуют единый математический континуум. Формально это выражается в том, что они составляют пространство Минковского.

    Инвариантность интервала ds или s является основой для вывода важнейших следствий теории относительности. чтобы упростить дальнейшие рассуждения, мы ограничимся одной пространственной координатой x. Обобщение на трехмерное пространство (x, y, z) не представляет труда, все сделанные далее выводы при этом сохраняются.

    ?=РИС. 4

    Отметим прежде всего, что теория относительности существенно изменяет наши повседневные представления о прошлом, будущем и настоящем. Из-за конечности скорости света c причинно-следственные связи определены лишь при значении интервала s?0. Чтобы представить себе наглядно неопределенно неопределенность ситуации при s<0, допустим, что в момент чтения книги в отдаленной части галактики произошел взрыв звезды, а читатель никак не ощутил этот взрыв и не имеет возможности получить о нем какую-либо информацию. Это типичный пример, отражающий ситуацию при s<0.

    Графически можно можно все пространство-время (x,t) разделить на четыре области (рис. 4). Пусть две пересекающиеся линии соответствуют уравнениям x = ±ct. Тогда области внутри угла AOB соответствуют будущему; внутри угла COD — прошлому, а углам AOC и BOD — неопределенной ситуации, которая в общем случае зависит от движения системы отсчета. В этом смысле надо понимать сделанное выше замечание относительно тезиса Аристотеля (отсутствие настоящего). Настоящее, соответствующее одновременно происходящим в разных точках пространства событиям, есть понятие относительное. Оно зависит от движения системы отсчета.

    Рассмотрим далее преобразование координаты x и времени t при переходе от одной системы отсчета (x,t) к другой (x',t'), движущейся со скоростью v относительно первой.

    Условие, определяющее это преобразование, инвариантность интервала s=s'. Это условие определяет преобразование, которое является единственным с точностью до тривиального переноса начала системы отсчета

    x' = x ch ? + ct sh ?,

    (24) ct' = x sh ? + ct ch ?,

    ? — аналог угла поворота декартовой системы в евклидовом пространстве (ср. с преобразованием (13)). В формуле (24) ch и ch — гиперболические функции в отличие от обычных тригонометрических функций в соотношении (13). Эта разница определяется тем, что в евклидовом (двумерном) пространстве Inv = x**2 + y**2 — окружность, а в псевдоевклидовом пространстве Inv = t**2 — x**2 — гипербола.

    Положим для простоты x=0. Это допущение не уменьшает общности рассуждений, однако сильно упрощает выкладки. Тогда

    x' = ct sh ?, ct' = ct ch ?. (25)

    Учитывая, что x'/t'=v, из (25) следует, что th ? = v/c. Используя известные соотношения для гиперболических функций, легко получить

    sh ? = (v/c) [1-(v/c)**2]**(-1/2),

    (26) ch ? = [1-(v/c)**2]**(-1/2),

    после чего из формул (24) и (26) следуют преобразования Лоренца:

    x+vt x' = —--------,

    -------,

    \/ 1-(v/c)**2

    (27)

    t+vx/c**2 t' = —--------.

    -------,

    \/ 1-(v/c)**2

    Из соотношений (27) следует:

    1. При v/c<<1 преобразования Лоренца переходят в преобразования Галилея (12).

    2. Интервалы длины и времени преобразуются соответственно:

    ^x ^x' = —--------,

    -------,

    \/ 1-(v/c)**2

    (28)

    ^t ^t' = —--------.

    -------,

    \/ 1-(v/c)**2

    Наметим далее вывод из метрических свойств пространства Минковского уравнения движения материальной точки

    p=mu, (29)

    где u — скорость частицы.

    В ньютоновской механике v = dx/dt; m=const (t абсолютное время). Чтобы обобщить импульс в рамках теории относительности, нужно проделать две операции, специфические для теории относительности: 1) условиться о системе отсчета, в которой определяется время; 2) обобщить 3-мерные векторы ньютоновской физики на 4-мерное пространство Минковского. Иначе говоря, следует ввести 4-мерный вектор, который при v/c — > 0 переходил бы в 3-мерный евклидов вектор, а в рамках теории относительности был бы аналогом 4-вектора (t,x,y,z). Найдем 4-мерный аналог скорости v=dx/dt. В русле идей теории относительности существует выделенная (собственная) система отсчета, связанная с материальной точкой. Действительно, в этой системе величина dx=const и время t=? однозначно связано с инвариантным интервалом ds. В том же случае, когда тело «истинно» точечное (dx=0), то ds=c d ?. Поэтому естественно в формуле для скорости положить

    u=dx/d ? (23)

    и на основании (23)

    v|||||

    x,y,z u||||| = —--------, x,y,z —-----,

    \/ 1-(v/c)**2

    где индексы x, y, z отмечают компоненты по соответствующим осям.

    Чтобы величина u была бы 4-вектором, нужно доопределить четвертую компоненту. В нашем распоряжении есть единственная величина, имеющая размерность скорости: скорость света c. Поэтому аналог временной компоненты 4-скорости:

    c u| = —--------. (32) t —-----,

    \/ 1-(v/c)**2

    Тогда выражение (29) для импульса можно записать в форме

    p| = m|u|, i 0 i

    ult m| — масса в собственной системе отсчета. Индекс i

    0 отмечает номер компоненты 4-скорости. Легко проверить, что величины p| (i=1,2,3,4 или t,x,y,z) образуют 4-вектор.

    i Действительно,

    (p|)**2 — (p|)**2 — (p|)**2 — (p|)**2 = (m|c)**2 = Inv. (34) t x y z 0

    По существу (34) есть частное следствие общего определения пространства Минковского: квадрат 4-вектора инвариант относительно поворотов и трансляций в этом пространстве. Другим важнейшим примером этого правила является инвариантность интервала. Отличие от векторного определения пространства Евклида сводится к правилу знаков: квадрат временно-подобной компоненты берется со знаком «+», а квадраты пространственно-подобных компонент — со знаком «-». Если потребовать сохранения формы (29) для выражения импульса в релятивистской механике через обычную скорость, то следует изменить определение массы, положив

    m m = —--------. (35)

    -------,

    \/ 1-(v/c)**2

    Все выводы релятивистской динамики, и в частности формулы (33) — (35), превосходно согласуются с экспериментальными данными, полученными на ускорителях. Точнее, они служат основой для конструирования больших ускорителей, образуя новую область, лежащую на стыке фундаментальной физики и инженерных дисциплин: релятивистскую инженерную физику.

    5. ЭЙНШТЕЙНОВСКАЯ ТЕОРИЯ ТЯГОТЕНИЯ

    Специальная теория относительности, геометрический образ которой воплощен в пространстве Минковского, вызывает невольные ассоциации с величайшими творениями искусства. Сочетание величия человеческого духа и лаконичности придают этой теории те качества, которые отличают настоящие ценности.

    Тем не менее специальная теория относительности отражение законов природы и поэтому, как и вся физические принципы, характеризуется определенными границами. Произведение искусства — автономно, научная теория неизбежно ограничена невидимыми (а зачастую и зримыми) проявлениями прогресса экспериментальной физики и логикой.

    И у специальной теории относительности есть границы применимости. Они проявляются довольно отчетлива, однако (и в этом одна из причуд истории науки) их не принято детально обсуждать. В этом нет, вероятно, никакой злонамеренности. подобная ситуация имеет простую психологическую подоплеку. В первые десятилетия после создания теории относительности у нее существовало столько принципиальных и беспринципных противников, что борьба велась не по линии теории ценных деталей, а по вопросу: быть или не быть теории относительности. И когда экспериментальные данные блестяще подтвердили специальную теорию относительности, а ее противники оказались полными банкротами, в общественном мнении возобладала антитеза отрицания — ее полная абсолютизация.

    Однако беспристрастный анализ продемонстрировал, что и у специальной теории есть свои проблемы, которые частично были блестяще использованы Эйнштейном при создании общей теории относительности, а частично вообще ускользнули из поля зрения научной общественности.

    Для того, чтобы изложить эти проблемы, мы будем опираться на мысленные эксперименты, которые так часто «проводились» в начале столетия. В частности, на них опирался Эйнштейн в процессе создания теории относительности.

    Трудно скрыть известную ностальгию по этой почти ушедшей эре, когда в физике царила наглядность, а формальные аспекты были на втором плане. К сожалению, в науке не всегда возможен стиль «ретро», но все-таки будем стремиться к максимальной наглядности. Вообразим систему отсчета, в которой движутся два тела (1 и 2) с разными скоростями. Тогда в области расположения тела 1 в соответствии с формулами (28) о сокращении масштабов пространство будет искажено: его однородность будет нарушена. Следовательно, будет нарушено основное условие определения инерциальной системы отсчета. Фактически многочастичное макроскопическое тело своим объемом нарушает однородность и изотропию пространства. Тем самым подрываются основы определения инерциальной системы координат. Макроскопическое (неточечное) тело нарушает свойства пространства Минковского: его однородность и изотропию. Поэтому становится проблематичным его использование для описания макроскопического тела.

    Это рассуждение — пример мысленного эксперимента. В нашем распоряжении нет твердых тел, которые можно разгонять до релятивистских скоростей, и поэтому непосредственная экспериментальная проверка выводов теории относительности применительно к макроскопическим телам затруднительна. Теоретические же рассуждения на эту тему (релятивистские преобразования температуры) лишены убедительности и однозначности, характерных для специальной теории относительности точечных тел.

    Но закроем глаза на эти проблемы, уводящие в сторону от основной линии книги, и попробуем применить эту теорию к конкретному макроскопическому телу — вращающемуся диску, знаменитому диску Эйнштейна. Пусть диск, являющийся абсолютно твердым телом, вращается равномерно вокруг своего центра. Очевидно, что линейные скорости точек диска, расположенные на разных расстояниях от центра, будут различны (пропорциональны расстояниям r). Тогда в соответствии с формулами (29) в этих точках будет различное сокращение. Пространство станет неоднородным, а следовательно, неевклидовым. Вращение диска есть неинерциальное ускоренное движение. Из этих двух фактов Эйнштейн заключил, что ускоренное движение нарушает евклидовость (псевдоевклидовость) пространства.

    В случае равномерного вращения диска и соответствующего постоянному во времени ускорению легко оценить, как меняется метрика пространства, заполненного диском, в зависимости от расстояния r. Вычислим, в частности, «неевклидовость» пространства на расстоянии r, если задана угловая скорость вращения ?. Если ? = 0, то пространство евклидово, т. е. d/r = 2 ?. (d — длина окружности в системе покоя диска). Если ? ? 0, то в направлении по радиусу диска масштаб останется несмещенным, следовательно, длина окружности увеличится в [1-(? r/c)**2]**(-1/2) раз. Во вращающейся

    d' d -1/2 системе координат — = — [1-(? r/c)**2] > 2 ?,

    r r

    что и является мерой неевклидовости.

    Нетрудно установить и метрику, соответствующую угловой скорости ? ? 0. В цилиндрических координатах при ? = 0 интервал

    ds**2 = (c dt)**2 — dr**2 — (r dFI)**2, (36)

    где FI — азимутальный угол.

    Если ? ? 0, то r=r'? FI=FI+? t, и интервал имеет вид

    (ds')**2 = [c**2-(? r')**2 (dt)**2 — 2 ? (r'**2 dFI' dt — (r' dFI')**2 — (-r')**2. (37)

    По какому бы закону ни преобразовывалось время, метрика (37) является римановой метрикой (6). Из того факта, что при ускоренном движении (вращение диска) возникает неевклидовость, которая представляется римановой метрикой, естественно допустить, что ускоренные движения изменяют метрические свойства пространства, а постоянно ускорение (? = const ? 0) приводит к обобщению пространства Минковского — пространству Римана. Именно эта идея Эйнштейна (взаимосвязь геометрии и динамики) кардинально изменила наши представления о неком абсолютном континууме пространства-времени. Даже пространство Минковского было в известном смысле абсолютно (независимость метрики от динамики). Общая теория относительности уничтожила эти остатки абсолютизации. Однако ограничиваться утверждением, что динамика влияет на свойства пространства, — это почти ничего не сказать. Это общее утверждение, а физики базируется на конкретных уравнениях. Чтобы их сформулировать, Эйнштейн придумал второй мысленный эксперимент (лифт Эйнштейна). Основная его идея базируется на факте (опыты В.Г.Брагинского и сотрудников), установленном с фантастической точностью (до двенадцатого знака): равенство гравитационной и инертной массы. из этого утверждения и законов Ньютона следует, что любое тело движется в однородном гравитационном поле с одинаковым ускорением. А мы видели, что такое движение приводит к изменению метрики пространства. Однако (и это составляет суть второй гипотезы Эйнштейна) пространство всегда остается римановым. Следовательно, интервал не зависит от системы отсчета: ds**2 = (ds')**2.

    Третья кардинальная идея Эйнштейна и основывается на первых двух. Риманова метрика определяется расположением тел в пространстве. Как обычно, фундаментальное физическое уравнение следует записать на языке инвариантов. Не останавливаясь на цепи рассуждений, отметим лишь, что уравнения гравитации следовало бы сформулировать на языке кривизн и тензора энергии импульса. Уравнение Эйнштейна имеет вид

    R|| — 1/2 g|| R = (8 ? G / c**4) T||, (38) юv юv юv

    где R|| — тензор кривизны, R — скалярная кривизна, T||

    юv юv тензор энергии-импульса:

    T|| = (?+p) u| u| — pg||, (39) юv юv

    здесь ? — плотность энергии, p — давление, u — 4-скорость. Инвариантные характеристики кривизны R|| и R определяются

    юv компонентами метрического тензора и его производными по времени. Мы не будем здесь выписывать эти довольно громоздкие выражения, которые можно найти в любой монографии, посвященной общей теории относительности.

    Таким образом, расположение частиц материи (тензор T||)

    юv определяет характеристики Риманова пространства (R||, R).

    юv Однако это влияние взаимно. Движение частиц, в свою очередь, определяется геометрией. Частицы движутся в римановом пространстве (гравитационном поле) по кратчайшим расстояниям — геодезическим.

    Сделаем некоторые комментарии к уравнению (38).

    1. Уравнение Эйнштейна не является полной геометризацией динамики. В правой части находится тензор T||, отражающий свойства материи. Уравнение (38) лишь юv отражает тесную связь между геометрией и динамикой.

    2. При нашем весьма упрощенном подходе к уравнению (38) мы, следуя Эйнштейну, опирались на весьма идеализированные мысленные эксперименты. Этот подход неоднократно подвергался критике и модифицировался. Однако почти всегда и при более рафинированном подходе получали уравнения гравитации в форме (38) или близкой к ней.

    3. Уравнение (38) прекрасно согласуется со всеми (правда, немногочисленными) экспериментальными данными.

    4. Вывод уравнений Эйнштейна на основе более строгих аргументов в известной мере бессмыслен. На поверку оказывается, что и эти строгие аргументы также содержат дополнительные постулаты. Этот факт отражает наше убеждение, что строгий «вывод» фундаментальных уравнений едва ли возможен. Об этом свидетельствует не только опыт вывода уравнений Эйнштейна, но и выводы основных уравнений электромагнитного поля (Максвелл) или уравнений электронов и позитронов (Дирак). В обоих случаях авторы исходили из аргументов, которые впоследствии критиковались. Однако уравнения Максвелла, Дирака и Эйнштейна — основа современной физики. Их справедливость была обусловлена в значительной степени красотой (симметрией), логичностью аргументации и гениальной интуицией авторов. Совершенствовать аргументацию фундаментальных уравнений физики — дело праведное, отрицать же их величие — верх нелепости. По нашему мнению, последняя оценка относится и к попыткам их канонизации — отрицанию ограниченности любой самой великой теории.

    6. ОБЪЕДИНЕННАЯ ТЕОРИЯ ВЗАИМОДЕЙСТВИЙ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

    Одна из основных (а быть может, и главная) задач современной физики — построение объединенной теории взаимодействий. В настоящее время достаточно хорошо изучены четыре фундаментальных взаимодействия: гравитационное, слабое, электромагнитное и сильное (см. Дополнение). Конечная цель заключается в том, чтобы написать единое уравнение, описывающее все четыре взаимодействия. Эта задача включает три элемента: 1) описание объединенного взаимодействия с помощью одной или нескольких констант взаимодействия, 2) включение в уравнение общих характеристик взаимодействий, 3) исключение из теории бесконечных величин, которые с неизбежностью возникают при использовании изолированных, необъединенных взаимодействий.

    Рассмотрим эти составляющие объединенной теории более детально. На первый взгляд первая задача — описание разных взаимодействий с помощью единой константы — утопия. Константы различных взаимодействий имеют разные величины, отличающиеся друг от друга на много порядков.

    Однако такое категорическое утверждение кардинально неверно. Дело в том, что константы всех взаимодействий зависят от передаваемого во время взаимодействия импульса массы m. При такой операции зависимость константы от передаваемой массы (импульса) существенно различна для разных взаимодействий. Константа ALHPA|, характеризующая

    e электромагнитное взаимодействие, зависит от передаваемой массы чрезвычайно слабо, и мы будем в дальнейших рассуждениях этой зависимостью пренебрегать, полагая ALPHA| (m) = const.

    e

    Константа ALHPA| сильного взаимодействия, описываемого

    s квантовой хромодинамикой, зависит от передаваемой массы приблизительно логарифмически. При условии m >> m|

    p (m| ? 10**-24 г — масса протона) теоретическая зависимость p ALPHA| (m) имеет вид

    s

    ALPHA| ~ (ln m\m|)**-1 (40)

    s p

    Константы ALPHA| ALPHA| слабого и гравитационного

    w g взаимодействий квадратично (~m**2) зависят от передаваемого импульса (массы).

    Именно разные энергетические зависимости констант ALPHA (m) и определяют потенциальную возможность их совпадений при некоторых значениях m. Здесь следует подчеркнуть именно потенциальность возможности существования значения m, при котором произойдет пересечение трех или четырех констант при едином значении m. Подобная ситуация отличается от предсказаний относительно совпадения двух констант, когда вполне естественно ожидать пересечения двух кривых ALPHA| (m) и ALPHA| (m) в одной точке.

    1 2

    Таким образом, возможность объединения взаимодействий совпадения констант ALPHA при определенном значении m apriori не очевидна. Лишь расчеты зависимостей ALPHA (m) могут подтвердить или опровергнуть возможность объединения констант. Здесь речь идет именно о расчетах, поскольку (как мы увидим ниже) масштабы масс, при которых происходят объединения трех и четырех взаимодействий, намного превосходят возможности современных или даже будущих ускорителей.

    Чтобы оценить масштабы масс, при которых происходит объединение, следует приравнять выражения ALPHA|, ALPHA|,

    w s ALHPA| значению ALPHA|~0.01, которое (как мы отмечали ранее)

    g e можно полагать постоянной. Тогда получаем следующие значения масс, объединяющих различные взаимодействия (см. таблицу).

    Значение массы, при Объединение взаимодействий котором происходят

    объединения (m|)

    p

    Электромагнитное-слабое 10**2 Электромагнитное-слабое-сильное 10**15 Электромагнитное-слабое-сильное-гра- 10**19

    витационное

    Из этой таблицы следует ряд примечательных следствий. Во-первых, объединение трех и четырех взаимодействий в принципе возможно, поскольку существуют значения масс, при которых происходит слияние трех и четырех констант. Во-вторых, в объединенных теориях возникают огромные масштабы масс — 10**15 m| и 10**19 m|. Например, для

    p p представления об этих величинах достаточно напомнить, что гипотетический кольцевой ускоритель с размером, равным диаметру Земли, мог бы ускорять частицы до энергии ~10**7 m|. И наконец, третье: электрослабое взаимодействие p характеризуется «человеческими» масштабами: ~100 m|. Эти

    p энергии уже достижимы на самых больших современных ускорителях. И действительно, в 1983 г. на ускорителе ЦЕРНа — Коллайдере были открыты переносчики слабого взаимодействия

    ± 0 — W||- и Z|-бозоны со значениями масс, точно соответствующими теории Глешоу-Вайнберга-Салама, описывающей это взаимодействие.

    Следует, пожалуй, пояснить причину возникновения масштабов масс в теориях, объединяющих электромагнитное, слабое и сильное взаимодействия (большое объединение) и все четыре взаимодействия (супергравитация). В большом объединении этот масштаб возникает из-за вялой, логарифмической зависимости ALPHA|(m) (см. (40)).

    s Приравнивая ALPHA| = ALHPA|, получаем массу объединения

    s e m|?10**15 m|. Масштаб характерной массы супергравитации x p (объединении всех взаимодействий) — следствие малости постоянной Ньютона, обуславливающей в свою очередь малость значения ALPHA| в низкоэнергетическом пределе: m~m|.

    g p

    Перейдем далее к определению общности свойств функций, описывающих состояние систем. Разумеется, речь идет о фундаментальных свойствах, общих для всех систем достаточно широкого класса (например, материальных точек).

    На математическом языке это означает, что уравнения, определяющие изменение функций состояния во времени, инвариантны относительно определенных групповых преобразований.` Простейшим примером такой инвариантности является трансляционная инвариантность. Простейшим примером такой инвариантности является трансляционная инвариантность уравнений Ньютона. Ни уравнения, ни физическое состояние системы не меняются при замене x' — > x+a, где a — некое постоянное число. Можно привести и другой пример групповой инвариантности. Рассмотренное ранее в гл.1 вращение системы координат также оставляет уравнения механики инвариантными. Группа, соответствующая вращению N-мерной сферы, называется группой вращения. Можно сказать, что уравнения механики (впрочем, это относится также и к электродинамике, хромодинамике и ко всем взаимодействиям, кроме гравитационного) инвариантны относительно преобразований группы трехмерных вращений, что отвечает изотропии трехмерного пространства Евклида.[9]

    Однако основная идея объединения взаимодействий относится не к макроскопическому пространству Евклида, а к «внутреннему» пространству элементарных частиц, отражающему их квантовые числа (см. Дополнение). Это пространство проще всего отождествить с расслоенным пространством, где база пространство Минковского, а пространства, соответствующие квантовым числам элементарных частиц (спину, изотопическому спину и цвету — см. Дополнение), являются слоями. Слои можно представить как сферы, «прикрепленные» к каждой точке базы. Векторы состояний вращаются внутри сфер-слоев в соответствии с правилами квантовой механики.

    Вообще говоря, нет априорных правил выбора этих слоев, и в частности их размерности. Видимое отсутствие этих правил отражает известный произвол в выборе квантовых чисел частиц — переносчиков взаимодействия. Поэтому на первый взгляд выбор этих квантовых чисел и масс частиц-переносчиков является лотереей, в которой выигрыш — счастливая случайность. Такой подход можно назвать феноменологических в том смысле, что в нем отсутствует руководящий принцип, ограничивающий выбор частиц-переносчиков. Однако сейчас господствует убеждение, что такой принцип существует. Это принцип калибровочной инвариантности, и его изложению и геометрической интерпретации будет посвящена значительная часть книги.

    Пока же мы ограничимся замечанием, что выбор общей группы и является одной из трех проблем объединения взаимодействия. Наконец, последняя из перечисленных проблем, решение которых необходимо для создания объединенной теории взаимодействия, — устранение бесконечностей из результатов вычислений. Желательно, чтобы эти бесконечности отсутствовали бы и в промежуточных выкладках, однако необходимое условие замкнутости теории — отсутствие бесконечностей в окончательных результатах (перенормируемость теории). Сравнительно недавно существовала лишь одна перенормируемая теория — квантовая электродинамика. Объединение слабого и электромагнитного взаимодействия (теория Глешоу-Вайнберга-Салама) привело к тому, что рассматриваемая изолированно неперенормируемая теория слабого взаимодействия оказалась лишь частью целого красивой, перенормируемой теории электрослабого взаимодействия. Удалось построить такую теорию, что бесконечности скомпенсировали друг друга; в результате получились конечные результаты, превосходно согласующиеся с экспериментом.

    Квантовая гравитация — существенно неперенормируемая теория. Можно сказать, что это свойство гравитации глубоко внутренне присуще ей. Естественный путь преодоления этого дефекта видится в построении теории, объединяющей все четыре взаимодействия — супергравитации, когда бесконечности, существующие в каждой изолированной теории, скомпенсируются. На этом пути есть определенные достижения, но расстояние до окончательной цели — построения полностью перенормируемой супергравитации — кажется еще весьма большим.

    7. КАЛИБРОВОЧНАЯ ИНВАРИАНТНОСТЬ

    ОСНОВНОЙ ДИНАМИЧЕСКИЙ ПРИНЦИП

    В предыдущем разделе мы сформулировали три основополагающих принципа построения объединенной теории. Однако первый (требование единства константы) и третий (устранение бесконечностей) принципы имеют ясно очерченный алгебраический характер (единое число, конечность теоретических выражений), то второй — единый тип симметрии кажется менее определенным. В самом деле, симметрий, воплощенных в теорию групп, бесконечно много, и совершенно не очевидно, чем следует руководствоваться при их выборе. Правда, ясны общие принципы, связанные с симметрией наблюдаемого 4-пространства Минковского (изотропия и однородность). Эти пространственные симметрии являются, как известно, первопричиной основных законов сохранения: закона сохранения энергии-импульса, закона сохранения момента импульса и инвариантности уравнений движения относительно преобразований Лоренца. Однако пространственно-временной симметрии и обусловленных ею законов сохранения совершенно недостаточно для обнаружения руководящей нити в безбрежном море возможных симметрий.

    Такая ситуация (отсутствие основной идеи) продолжалась сравнительно долго, и частично она была причиной неудач в попытках Эйнштейна и других выдающихся физиков построить единую теорию поля. Однако в последние два десятилетия постепенно намечались, а затем четко очертились контуры руководящего принципа поиска «истинной» симметрии динамических уравнений. Эта симметрия, известная под названием калибровочной инвариантности, была обнаружена очень давно — со времен первых исследований электромагнитных явлений, однако вначале она казалась излишеством. Затем, в двадцатых годах XX в., в особенности после работ немецкого математика и физика Г.Вейля (крестного отца этого типа симметрии), к ней привыкли, но не придавали ей сколько-нибудь решающего значения. Лишь после успехов в создании теории объединенного электрослабого взаимодействия и квантовой хромодинамики — теории сильного взаимодействия среди специалистов возникло общее убеждение: калибровочная инвариантность есть основной динамический принцип.

    Констатация широкой популярности калибровочного принципа при длительном непонимании его важности не есть просто дань риторике. Вероятно, подобная ситуация отражение узловых парадоксов физики, являющихся двигателем ее прогресса. Уверенность в важности калибровочного принципа возникла на пересечении двух течений физики, которым, казалось, никогда не слиться в единое русло.

    В 1954 г. работающие в США физики Ч.Янг и Ф.Миллс исследовали новый тип уравнений, описывающих безмассовые поля на основе калибровочного принципа. Но поскольку единственной в те времена известной безмассовой частицей переносчиком взаимодействия был фотон — основная частица электромагнитного взаимодействия, то уравнения Янга-Миллса посчитали физико-математической экзотикой.

    В 1964 г. при полном отсутствии какой-либо видимой связи с уравнениями Янга-Миллса независимо М.Геллман и Г.Цвейг выдвинули весьма экзотическую по тем временам теорию кварков. Исключительная необычность этой теории заключалась в дробном (сравнительно с электроном) значении электрического заряда. Таких частиц никто и никогда не наблюдал, хотя их обнаружение по величине ионизационных потерь было бы весьма простым делом. Поэтому к модели кварков вначале было отношение двойное: с одной стороны привлекало ее исключительное изящество и простота, с другой — видимое противоречие с экспериментом (отсутствие реальных кварков) подрывало привычную для физических теорий основу экспериментальное обнаружение фундаментальных объектов. Однако с годами число косвенных подтверждений гипотеза кварков быстро увеличивалось, что привело к возросшему числу верящих в нее. И примерно в начале 70-х годов возникла необходимость в описании взаимодействия между кварками. Тогда вспомнили о теории Янга-Миллса, которая качественно объясняла невылетание кварков из реальных адронов`. Оказалось также, что эта теория, примененная к модели кварков, и количественно объясняет многие экспериментальные факты. Постепенно создавалось убеждение, что теория Янга-Миллса составляет основу интерпретации взаимодействия кварков. Эта теория применительно к кваркам получила название квантовой хромодинамики по аналогии с квантовой электродинамикой. Замена «электро» на «хромо» объясняется тем, что кварки (как и любые сильно взаимодействующие частицы) характеризуются цветовым (chromo) зарядом, подобно тому как электроны и протоны характеризуются электрическим зарядом (см. Дополнение). Уже упоминалось, что теория Янга-Миллса (квантовая хромодинамика) базируется на калибровочной инвариантности. Эта же симметрия лежит в основе объединенного электрослабого взаимодействия. Поэтому возникло убеждение, что именно калибровочная симметрия базис единого взаимодействия.[10]

    В этом разделе мы изложим элементарные представления о калибровочной симметрии и ее фундаментальной роли.

    Верные нашей схеме, мы рассмотрим простейшую систему, состоящую из двух тел. Первое, тяжелое, определяет систему отсчета, воздействует на второе тело и создает статическое (независящее от времени) поле. Движение второго тела (частицы) определяется этим полем. Движение второго тела (частицы) определяется этим полем. Понятие калибровочной инвариантности основано на постулате существования некоторой неизмеряемой на опыте функции состояния системы, но определяющей это состояние. В частном случае статического электрического поля такой функцией состояния является потенциал FI. Известно, что абсолютное значение FI не определяет никакие физические характеристики системы. Простейшее проявление этого принципа — безопасность прикосновения к одному из двух проводов, по которым протекает ток. Более сложным выводом является утверждение, что энергия системы, или работа, реализуемая при перемещении из точки x| в точку x|, определяется не абсолютными

    1 2 значениями потенциалов FI(x|) и FI(x|), а исключительно их

    1 2 разностью FI(x|) — FI(x|). Следовательно, значение

    1 2 потенциала определено с точностью до аддитивной постоянной. Если во всем пространстве (для статической системы) изменить потенциал на одну и ту же величину b, то физическая ситуация останется неизменной.

    Этот пример — простейшее и давно известное проявление калибровочной инвариантности. Однако из данного выше общего определения калибровочной инвариантности следует неоднозначность постулируемой функции состояния. Действительно, если функция определяет состояние в точке x, но не измеряется на опыте, то все физические характеристики должны зависеть от производных этой функции или (как в случае статического поля, рассмотренного выше) от разности FI(x|) — FI(x|). В обоих случаях прибавление к функции FI

    1 2 величины b

    FI' — > FI+b (41)

    не меняет физическую ситуацию.

    Различают два вида калибровочной инвариантности: 1) величина b=const(x), т. е. постоянна во всем пространстве (в этом случае говорят о глобальной калибровочной инвариантности); b=b(x) (этот случай соответствует локальной инвариантности

    Мы остановимся в основном на более простом первом случае. Далее мы продемонстрируем простейшее приложение калибровочного принципа — вывод закона Кулона и закона сохранения в электростатике.

    Простейшие соображения таковы. Поскольку рассматриваемая система состоит из двух тел, то вектор силы, действующий на пробное тело, должен быть направлен по линии, соединяющей оба тела. Единственный вектор, удовлетворяющий этому условию и калибровочной инвариантности, есть grad TI = d FI / dr. В частности, работа, производимая такими силами, равна интегралу

    r| 2 —\ \ d FI \ —- dr = FI (r|) — FI (r|). \ dr 1 2

    \ \- r| 1

    Существенно, что в рамках электростатики осуществляется глобальное (а не локальное) калибровочное преобразование. Отсюда можно вывести важное следствие: если потенциал нашей системы представляется некоторой функцией FI(r), то калибровочное преобразование (изменение потенциала в каждой точке на постоянную величине b) не изменяет основного свойства пространства: изотропию и однородность. Поскольку наша система относительно тела отсчета была сферически-симметричной, то, следовательно, все наблюдаемые физические величины (энергия, сила, действующая на пробное тело) также должны характеризоваться сферической симметрией.

    Таким образом, величины grad FI или FI(x|) — FI(x|)

    1 2 определяют наблюдаемые физические величины. Отсюда следует, что работа, произведенная калибровочным полем, однозначно определяется разностью FI(x|) — FI(x|) и не зависит от пути,

    1 2 по которому двигалась пробная частица. Тогда можно показать, что число силовых линий статического калибровочного поля остается неизменным в пространстве (во времени оно неизменно вследствие условия статичности). Действительно, существуют две возможности изменения числа силовых линий: 1) их «обрыв» на границе некоторой пространственной области и 2) пересечение, «взаимодействие» силовых линий в некоторых точках x|, x|…. ? x|, x|. Обе возможности противоречат

    3 4 1 2 следствию о независимости работы от пути, проходимого частицей. Действительно, рассмотрим первое допущение. Работа, производимая при переносе тела из точки x| до

    1 границы области, зависит от точки границы x|, а работа,

    k производимая при переносе тела из точки x| в точку x|, равна

    k 2 нулю. Следовательно, суммарная работа зависит от пути, что противоречит основному постулату.

    Если же силовые линии пересекаются, то силы, действующие на пробную частицу, зависят от конкретной формы пересечения силовых линий в некоторых точках x|…, x|.

    1 k Это должно также привести к зависимости работы от пути. Следовательно, число силовых линий калибровочного поля (FI' — > FI+b) точечного источника в статическом случае взаимодействия в том смысле, который указан в разд.3 этой главы. Для такого случая выполняется закон F~1/r**2.

    Вывод о неизменности числа силовых линий можно получить из калибровочной инвариантности и несколько иным путем. Поместим в начало отсчета две заряженные частицы, обладающие зарядами e| и e|, характеризующими их силовые поля.

    1 2 Суммарное поле FI на расстоянии r можно представить в общем виде:

    FI[(e|+e|), r]=FI |(e|,r)+FI |(e|,r)+FI |(e|,e|,r). (42)

    1 2 1 1 2 2 3 1 2

    Произведем калибровочное преобразование, соответствующее каждому из зарядов:

    FI'[(e|+e|), r] — > FI[(e|+e|), r] + b,

    1 2 1 2

    FI'(e|,r) — > FI |(e|,r) + b, (43)

    1 1 1

    FI'(e|,r) — > FI |(e|,r) + b.

    2 2 2

    Уравнения (42) и (43) совместны, если FI(e|,e|,r) = — b = const(r), что соответствует глобальному

    1 2 калибровочному преобразованию. Иначе говоря, из него следует принцип суперпозиции:

    FI[(e|+e|), r]=FI |(e|,r)+FI |(e|,r), (44)

    1 2 1 1 2 2

    который также отражает слабость взаимодействия.

    Мы до сих пор рассматривали систему из двух частиц. Однако вследствие принципа суперпозиции все выводы нетрудно обобщить на статическую систему, состоящую из любого числа частиц.

    Таким образом, электростатика, базирующаяся на законе Кулона, — следствие калибровочной инвариантности. Очевидно (к этому мы привыкли из школьного курса физики) и обратное утверждение: глобальное калибровочное преобразование следствие закона Кулона. Калибровочная инвариантность взаимосвязана с электростатикой. Далее мы проиллюстрируем общность взаимосвязи динамики и калибровочной инвариантности.

    Остановимся на другом важнейшем следствии калибровочной инвариантности. Опираясь на факт существования функции FI(x), которая определяет работу при перемещении пробного тела из точки x| в точку x|, можно сделать вывод о

    1 2 сохранении заряда (пока в рамках электростатики). Действительно, по определению, заряд — мера воздействия тела (в нашем примере тела отсчета) на силовое поле или мера реакции пробного тела на величину силового поля. Пусть по пути из точки x| в точку x| заряд пробного тела изменится, а

    1 2 заряд тела отсчета останется неизменным. Тогда работа не будет определяться исключительно разностью FI(x|)-FI(x|). Аналогичное рассуждение можно провести, полагая, что заряд тела отсчета изменится.

    Однако в силу принципа суперпозиции (см.(44)), если оба тела соприкоснутся, заряд с одного тела может перейти на другое тело. Принцип суперпозиции вполне консистентен переходу заряда от одного тела к другому при условии сохранения суммы зарядов.

    Таким образом, мы продемонстрировали закон сохранения заряда для системы, состоящей из двух тел. Далее мы поясним этот закон в общем случае и в случае нестатических систем. До сих пор мы анализировали простейшую физическую ситуацию электростатику. Однако вид калибровочной инвариантности однозначно определяет и самые общие уравнения движения и форму квантовой теории полей. Здесь же мы лишь наметим аргументацию этого утверждения. Дело в том, что его доказательство в полном объеме требует хорошего знакомства с квантовой теорией поля. Но даже и на таком уровне весь комплекс вопросов, основанный на принципе калибровочной инвариантности, на наш взгляд, изложен в литературе (особенно учебной) неполно. И этот факт прискорбен. Хотя, по нашему мнению, аксиоматическое изложение физики невозможно, однако выявление основных принципов и дедуктивное ее изложение кажется весьма целесообразным как с дидактических позиций, так и с точки зрения выявления общих граней разнородных физических объектов и теорий. Сейчас же в учебной литературе (в том числе в курсах теоретической физики) калибровочный принцип излагается походя, как бы между прочим. В специальной же литературе, посвященной калибровочной теории, обычно затрагиваются не все аспекты этого принципа. Мы попытаемся дать лаконичное и поэтому не слишком строгое изложение основных сторон этого принципа.

    Калибровочный принцип обуславливается типом частицы переносчика взаимодействия. Достаточным условием калибровочной инвариантности является равенство нулю массы частиц-переносчиков.

    Рассмотрим классическое движение, которое, как известно, определяется уравнениями Лагранжа. Уравнения Лагранжа определяются вариацией лагранжиана, который должен быть функцией от скаляров, которые естественно являются релятивистскими инвариантами.

    Рассмотрим простейшее калибровочное поле электромагнитное. Допустим, что электромагнитное поле представляется релятивистским 4-вектором A|. Тогда из

    i векторов можно образовать только два типа скаляров

    i i (скалярных произведений): eA|dx| и aA|A| (здесь индекс i

    i i пробегает значения i=1,2,3,4; e,a — постоянны). Пусть все реальные физические величины инвариантны относительно калибровочного преобразования:

    A|' — > A| + DLf/DLx|, (45) i i i

    где f — некоторая произвольная функция при калибровочных преобразованиях от 4-координат. Тогда можно написать следующее равенство:

    i ?(ef) i eA| dx| + —--- dx| = eA|dx| + d(ef), (46)

    i DLx| i i

    i

    где d(ef) — полный дифференциал от функции ef. Однако прибавление полного дифференциала к лагранжиану не изменяет уравнения движения. Замена же (45) в квадрате

    i вектора A|A| приводит к изменению лагранжиана, и,

    i i следовательно, член A|A| нарушает калибровочную

    i инвариантность уравнений движения. Следовательно, лагранжиан

    i не может содержать скаляры типа A|A|. В теории поля

    i демонстрируется, что эти члены могут появиться в том случае, когда частицы — переносчики взаимодействия — характеризуются ненулевой массой. Следовательно, чтобы удовлетворить условию (46), достаточно, чтобы масса частицы-переносчика была бы строго равна нулю. В электродинамике такой частицей является фотон. Экспериментально установлено, что масса фотона m||||| < 4.5*10**-16 эВ/с**2, это в 10**21 раз меньше массы GAMMA самой легкой частицы — электрона. Естественно полагать, что в соответствии с принципом калибровочной инвариантности m|||||=0. GAMMA

    С другой стороны, из принципа неопределенности следует, что радиус действия сил, обусловленных частицей-переносчиком ~HP/mc. Для электродинамики это означает, что электромагнитные силы — дальнодействующие. Их радиус r|?HP/m|||||c при m||||| = 0 равен бесконечности. Этот факт

    GAMMA GAMMA для электростатики следовал из простых физических соображений (см. выше).

    Ввиду исключительной важности калибровочного принципа мы здесь наметим другой вывод уравнения электродинамики в рамках квантовой теории.

    В квантовой механике состояние представляется волновой функцией ?. Вообще говоря, функция ? — комплексное число; среднее значение какой-либо динамической величины A равно интегралу

    --\

    \ * <A> = \ ?| (x) A ? (x) dx, (47) </A>

    \

    \

    \-

    x — точка в пространстве Минковского. Ясно, что значение величины <A>инвариантно относительно преобразования </A>

    i ALPHA PSIG'(x) — > e||||||| ? (x). (48)

    Инвариантность величины <A>- следствие тождества i ALPHA — i ALPHA e||||||| * e|||||||| = 1 и того, что комплексно-сопряженная. </A>

    * * функция ?| (x) преобразуется по закону ?| (x) — > — i ALPHA * e|||||||| ?| (x). Следовательно, состояние системы,

    * которое определяется произведениями ?| A ?, инвариантны относительно преобразований (48), которые характеризуются изменениями фазы ALPHA. Существенно, что в приведенном примере ALPHA = const (x). Поэтому преобразование (48) называется глобальным фазовым (калибровочным) преобразованием.

    В известном смысле глобальное фазовое преобразование не согласуется с основным принципом теории относительности конечностью скорости передачи информации. Действительно, в нашем распоряжении нет возможности согласовать этот принцип с синхронизацией какой-либо величины (в том числе и фазы ALPHA) во всем бесконечном пространстве. Здесь не случайно сделана оговорка «в известном смысле», так как на практике обычно рассматриваются конечные области пространства. Однако принципиальный вопрос остается. Поэтому целесообразно обобщить инвариантность (48), требуя, чтобы фаза ALPHA зависела от положения системы ALPHA = ALPHA (x) ? const (x), а функция ? преобразовывалась по закону

    i ALPHA(x) PSIG'(x) — > e|||||||||| ? (x). (49)

    Инвариантность такого типа называется локальной калибровочной инвариантностью. Оказывается, что требование уравнений динамики относительно локальной калибровочной инвариантности однозначно определяет уравнения поля.

    Остановимся сначала на уравнениях электродинамики. Как известно, ее уравнения (уравнения Максвелла или Дирака) определяются значением функций (полей) и их первыми производными. Выше отмечалось, что физические величины не зависят от значения фазы ALPHA. Однако эта независимость сохраняется для производных лишь при условии ALPHA=const(x), т. е. при глобальных преобразованиях. В общем случае (ALPHA=ALPHA(x)) производная

    ? ? i ALPHA(x) ? ?(x) —--- — > e|||||||||| [------ + ? x ? x

    ? ALPHA (x) + ? (x) —------] (50)

    ? x

    и, следовательно, неинвариантна относительно локальных калибровочных преобразований.

    Однако можно показать, что эта инвариантность восстанавливается, если наряду с преобразованием (48) при ALHPA = ALHPA (x) ввести одновременно калибровочное преобразование потенциалов

    A|'(x) — > A|(x) + ? ALPHA (x) / ? x, (51) ю ю

    с которыми мы уже сталкивались (см. (45)). Иначе говоря, уравнения электродинамики (или их квантовый эквивалент уравнения Дирака) инвариантны относительно совокупности обоих калибровочных преобразований (49), (51).

    С другой стороны, из этих преобразований однозначно следуют уравнения электродинамики: классические и квантовые.

    Калибровочные преобразования (49), (51) — необходимые и достаточные условия уравнений электродинамики.

    Сделаем в заключение три важных замечания.

    1. Вывод о калибровочной инвариантности (соотношение 46)) базируется на допущении о неизменности фактора e при калибровочных преобразованиях. Ясно из определения этого фактора, что он играет роль электрического заряда. Таким образом, неизменность величины e отражает неизменность электрического заряда, т. е. его сохранение. Закон сохранения заряда никак не связан с видимым 4-мерным пространством. Он определяется калибровочной инвариантностью. Далее, в разд.9 этой главы мы продемонстрируем связь геометрии с калибровочной инвариантностью и, следовательно, законом сохранения заряда. Однако эта геометрия весьма отличается от геометрии Евклида или Минковского.

    2. В соотношении (45) вектор A и функция f или ALPHA зависят от четырех координат (t,x,y,z). Этим калибровочное условие (45) или (51) существенно отличается от калибровочного соотношения (41), в котором величина b не зависит от координат.

    3. Таким образом, можно установить эквивалентность следующих утверждений:

    уравнения движения (поля) — калибровочно инвариантны,

    заряд в замкнутой системе сохраняется,

    силы в статическом случае дальнодействующие,

    масса частицы переносчика взаимодействия m|||||=0.

    GAMMA

    Последнее свойство является важной особенностью калибровочной инвариантности, а также и всех остальных ее следствий. Дело в том, что частицы с нулевой массой обладают особым свойством: у таких частиц существует всего два направления поляризации в отличие от частиц с массой m ? 0, у которых имеются три три направления поляризации. Это особое свойство безмассовых частиц и есть первопричина калибровочной инвариантности.[11]

    8. ГЕОМЕТРИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СОСТОЯНИЙ

    Рассмотрим пример: систему невзаимодействующих частиц, движущихся по классическим траекториям. Каждой частице в момент времени t соответствуют свои координаты и проекции импульса. Таким образом, каждой точке видимого пространства соответствует значение вектора импульса. Можно рассматривать движение системы частиц в этом пространстве, не придавая совокупности импульсов никакого геометрического смысла. Кроме того, можно полагать, что вся совокупность координат играет роль базы, а векторы импульсов — слоев. При отсутствии взаимодействия подобное расслоенное пространство тривиально, а использование в данном случае образа расслоенного пространства и его несколько непривычных для физиков понятий — ненужное усложнение. Разумнее рассматривать изолированно два пространства: конфигурационное (координаты) и импульсное.

    Однако ситуация меняется, если пытаться интерпретировать внутренние квантовые числа элементарных частиц. Здесь мы остановимся на геометрической интерпретации спина, изотопического спина и цвета (об этих квантовых числах см. Дополнение).

    Введем вектор, характеризующий состояние системы, которую для определенности мы будем отождествлять с частицей. В первом приближении под состоянием следует понимать значения ее координат и вектора импульса.

    Однако если пытаться включить в понятие состояния значения внутренних квантовых чисел, то элементарная (привычная) наглядность состояния частицы утрачивается. Если понятие спина частицы можно отождествить с вращением вектора состояния в обычном конфигуральном пространстве (например, пространстве Минковского), то уже при попытке наглядно геометрически интерпретировать изотопический спин возникают определенные трудности. Формализмы обычного и изотопического спинов тождественны. Они соответствуют вращениям вектора состояния в трехмерном пространстве`. В интерпретации спина проблем нет. Это наше привычное евклидово пространство. Однако в каком пространстве вращается вектор изотопического спина? Со времен введения понятия изотопического спина (Гейзенберг, 1932) произносили слова, похожие на заклинание: вектор изотопического спина вращается в воображаемом «зарядовом» пространстве.[12]

    Однако, используя язык расслоенных пространств, этому заклинанию можно придать некоторый физико-геометрический смысл. Допустим, что изотопическое пространство является слоем над базой — пространством Евклида (Минковского). Иначе говоря, мы представляем реальное физическое пространство как расслоенное пространство с базой — видимым пространством и слоем — изотопическим (зарядовым) пространством. Нам нужно, чтобы свойства этого слоя удовлетворяли двум условиям: 1) слой должен быть трехмерной сферой (аналог пространства, в котором вращается вектор обычного спина), 2) размеры этой сферы должны быть очень малы, во всяком случае, много меньше расстояний 10**-16 см, хорошо изученных на опыте. Если бы радиус слоя превышал 10**-16 см, то слой изотопическое пространство — проявлялся бы на экспериментах, в основе которых лежат представления о реальном физическом пространстве. Этот эффект, например, проявлялся бы в отклонении наблюдаемого сечения рассеяния позитронов на электронах от вычисленного значения сечения. Поскольку такое отклонение отсутствует, то следует сделать вывод, что если изотопическое пространство и реально, то его размеры (размеры слоя) весьма малы. В дальнейшем, в гл.3, мы оценим эти размеры.

    Исключительная малость размеров изотопического пространство делает в известном смысле иллюзорной попытку провести грань между словами «реальное» и «воображаемое» пространство. На опыте это пространство ненаблюдаемо, а слова: «изотопическое пространство есть слой над базой видимое пространство» — имеют в значительной степени филологические смысл.

    ?=РИС. 5

    Подобная квалификация кажется тем более оправданной, поскольку простая геометризация изотопического спина никак не увязывается с взаимодействием частиц. Чтобы реализовать связи в треугольнике геометрия — изотопический спин взаимодействие, нужна руководящая идея. Пока мы ограничимся постулированием такой идеи, а в гл.3 подробно изложим аргументы в ее пользу.

    В настоящее время представляется, что основой сформулированного выше «треугольника» является калибровочная инвариантность. В качестве предварительного оправдания подобного постулата можно привести довод: калибровочная симметрия (правда, в различных модификациях) лежит в основе четырех известных взаимодействий.

    Можно наглядно (но упрощенно) представить геометрическую интерпретацию изотопического спина (рис. 5). К каждой точке прямой «прикреплена» сфера произвольного (единичного) радиуса, в которой вращается вектор состояния, зависящий от координаты. Разумеется, реально точка базового пространства имеет три, а не одно измерение, однако представить наглядную 4-мерную конструкцию невозможно.

    9. МНОГОМЕРНАЯ ИНТЕРПРЕТАЦИЯ ВЗАИМОДЕЙСТВИЙ

    Для понимания дальнейшей процедуры геометризации взаимодействия нужно четко представить следующие положения:

    1. Взаимодействие обуславливается свойствами частиц переносчиков взаимодействия, и в частности их изотопическим спином (см. Дополнения).

    2. Состояние представляется вектором, вращающимся в слое расслоенного пространства.

    3. Взаимодействие определяется характеристиками расслоенного пространства, и в частности связностью.

    4. В основе взаимодействия лежит калибровочная инвариантность.

    Эти положения носят программный характер. Дальнейшее представляет их конкретную реализацию. Для простоты ограничимся вначале электродинамикой. Как упоминалось ранее, уравнения электродинамики однозначно определяются характеристиками фотона — частицы, переносящей электромагнитное взаимодействие. Масса и изотопический спин фотона равны нулю. Это обстоятельство приводит к фазовой инвариантности функции состояния

    i ALPHA(x) PSIG'(x) — > e|||||||||| ?(x) и калибровочной инвариантности потенциалов A'(x) — > A(x) + ? f (x) / ? x. Важно, что в формуле для преобразования функция ALPHA(x) простое (хотя, возможно, и комплексное) число, а не матрица. Это свойство определяется нулевым значением изотопического спина фотона. Если бы изотопический спин частицы-переносчика был отличен от нуля, то коэффициент ALPHA представлялся бы матрицей, что кардинально изменяло бы ситуацию. Этот случай будет рассмотрен далее.

    Вернемся теперь к соотношению инвариантности функции ? в электродинамике и будем геометрически

    i ALPHA(x) интерпретировать фазовый множитель e||||||||||. Рассмотрим, как и ранее, простейший случай статического поля. В этом случае ALPHA(x) = const. Однако (и это обстоятельство играет важнейшую роль) ALPHA может иметь любое действительное значение.

    Напомним еще раз, что вследствие теоремы Эйлера функция i ALPHA e||||||| соответствует точке в плоскости комплексного переменного:

    i ALPHA e||||||| = cos ALPHA + i sin ALPHA (52)

    Таким образом, cos ALPHA есть значение действительной,

    i ALPHA а sin ALPHA — мнимой части комплексного числа e|||||||.

    i ALPHA Модуль комплексного числа! e|||||||! = 1. С геометрических позиций эта интерпретация эквивалентна

    i ALPHA утверждению, что функция e||||||| есть точка в двумерной декартовой плоскости с абсциссой, равной cos ALPHA, и ординатой sin ALPHA. Эта точка лежит на окружности с радиусом, равным единице. Учтем далее, что ALPHA принимает произвольное действительное значение. следовательно, число i ALPHA e||||||| при любом значении ALPHA образует окружность с единичным радиусом. Инвариантность относительно преобразования (49) означает, что вектор состояния ? может находиться на такой окружности, которая обозначается

    1 символом S| (сфера размерности единица). Поэтому естественно

    1 допустить, что окружность (сфера S|) и является слоем над базой — привычным пространством Минковского. Напомним, что в данном случае рассматриваются только электромагнитные силы, поэтому следует отождествлять базовое пространство с пространством Минковского. При совместном действии электромагнитных и гравитационных сил следовало бы базой полагать пространство Римана.

    Нетрудно определить и связность расслоенного пространства, соответствующего данному статическому случаю. Как обычно, начало координат отождествим с заряженным телом отсчета. Пусть расстояние до данной точки в пространстве Минковского (Евклида) равно R. Тогда следует слой (плоскость окружности) расположить перпендикулярно вектору R, проходящему через центр окружности. Характеристикой расслоенного пространства, связывающего взаиморасположение соседних слоев и физическую ситуацию, является плотность центров окружностей (слоев) на окружности в базе с радиусом R. Следует положить, что эта плотность равна потенциалу!e!/R, где e — заряд тела отсчета.

    Естественно, что, вводя слои-окружности, мы увеличиваем на единицу размерность пространства. Нужно четко представить (вообразить), что слой — это не геометрическое место точек в базе, а автономная геометрическая конструкция над базой.

    Наше мышление устроено таким образом, что реально представить это дополнительное, пятое измерение мы не в состоянии. Поэтому некоторое упрощенное представление о дополнительном измерении может дать двумерная плоскость (база), к каждой точке которой «прикреплена» окружность с центром в этой точке. Плотность слоев убывает с увеличением расстояния от начала координат — тела отсчета с зарядом e.

    Хотя наши рассуждения относились к простейшему статическому случаю, однако геометрическая интерпретация электромагнитного взаимодействия на основе расслоенного

    1 пространства со слоем S| сохраняется и в общем, нестатическом случае с единственным различием: связность такого расслоенного пространства определяется не только скалярной функцией FI, но и 4-векторным потенциалом A|, в

    ю котором функция FI является лишь временной компонентой. Трактовка потенциалов как связностей оправдывается и тем, что связности определены неоднозначно. Например, связность, представленная на рис. 3, определена с точностью до трансляционной инвариантности в слое.

    Здесь полезно сделать одно отступление. Хотя мы исходили из концепции расслоенного пространства, однако исторически геометрическая интерпретация электромагнетизма, основанная на введении пятого дополнительного измерения, была введена Т.Калуцей в 1921 г. задолго до формирования идей расслоенного пространства.

    В ту далекую эпоху вследствие торжества общей теории относительности (количественное согласие предсказаний ОТО с наблюдениями отклонения света в гравитационном поле Солнца) возникла идея объединения известных тогда взаимодействий (гравитационного и электромагнитного) на геометрической базе. С этой целью предпринимались попытки модифицировать физическую геометрию, обобщая 4-мерную геометрию Римана.

    В частности, Калуца пытался объединить взаимодействия, введя пятое измерение в рамках многомерной римановской геометрии, т. е. обобщая метрику Римана. В этой теории простейшая метрика объединенного взаимодействия имела вид:

    ! g|| + A|A| A|!

    ! юv ю v ю! g|| =!! (53) AB! A| 1!

    ! v!.

    Индексы ю, v пробегают значения 1,2,3,4. Компоненты метрического тензора g|| представляют риманово пространство

    юv ОТО. Индексы A,B могут иметь значения от 1 до 5. A|

    ю 4-вектор — потенциал электромагнитного поля.

    Можно показать, что метрика (53) соответствует

    4 1 расслоенному пространству — произведению R| x S| — и представляет совместное действие гравитационного и электромагнитного полей.[13]

    Несмотря на красоту идей Калуцы, к концу 30-х годов интерес к пятимерным теориям был практически утрачен. Физиков (в том числе и Эйнштейна), занимающихся объединением взаимодействий на базе многомерного пространства, посчитали чудаками, а само это направление бесперспективным. Для подобной пессимистической оценки было немало оснований. Перечислим их в том порядке, который (по мнению автора) отражает их важность.

    1. К тому времени четко определилось воззрение, что электромагнитное и гравитационное взаимодействия не исчерпывают все силы в природе. Появились доказательства существования сильного и слабого взаимодействий, кардинально отличных от первых двух. Для вновь открытых взаимодействий не было места в оригинальной схеме Калуцы или в схемах его современников.

    2. В схеме не было оснований для выбора размеров окружности слоя. Было лишь ясно, что эти размеры очень малы (<<10**-13 см, т. е. много меньше радиуса действия ядерных сил), однако никакие столь малые характеристические размеры не имели теоретических основ.

    3. Схема Калуцы не приводила ни к каким новым предсказаниям или интерпретациям фундаментальных фактов.

    4. Физическое пространство в рамках этой теории имело довольно странный вид: три пространственных координаты имели огромную протяженность (~10**26 см — размеры Метагалактики), четвертая же координата имела циклический замкнутый характер с очень малыми размерами.

    Все эти соображения привели к тому, что многомерными теориями занимались очень немногие физики.

    Исключительно эффективная реставрация идеи многомерного физического пространства произошла через тридцать лет после описываемых событий, в середине 70-х годов. Можно назвать несколько важных причин этой реставрации.

    Во-первых, значительные успехи в теории объединения взаимодействий. Правда, в основе этих успехов лежали идеи, существенно отличные от идей Калуцы — Эйнштейна. Объединение основывалось на квантовой теории поля.

    Во-вторых, появилась теория, претендующая на объяснение сильного взаимодействия. Эта теория базировалась на идее существования кварков (квантовая хромодинамика; см. разд.6 гл.2).

    В-третьих, в рамках теорий, объединяющих три или все четыре взаимодействия, появились очень малые масштабы. Первый масштаб (большое объединение трех взаимодействий) равен 10**-28 — 10**-29 см. Второй масштаб возник в рамках супергравитации (объединение всех четырех взаимодействий). Этот масштаб, так называемая планковская длина`,

    HP G 1/2 -33 l| ~ (---) = 10 см. (54) p c**3

    Эти расстояния — следствие огромных масштабов масс объединения (см. таблицу в разд.6).[14]

    И наконец, последнее: появилось некоторое понимание природы размерности макроскопического пространства (N=3). Коротко (подробнее см. гл.3) можно сказать, что значение N=3 — результат некоторых случайных процессов, природа которых до конца не установлена. Однако можно допустит ь, что «истинная» размерность пространства в различных областях Вселенной не одинакова, поэтому «странная» геометрия Калуцы оказывается в определенном смысле естественной.

    До сих пор мы почти одновременно говорили о совместной геометрической интерпретации электромагнитного и гравитационного взаимодействий и существовании других (слабого и сильного) взаимодействий, которые как будто не укладываются в схему Калуцы.

    Ранее указывалось, что решение этой проблемы появилось в результате создания теории взаимодействия кварков (квантовая хромодинамика) и успехов в объединении электромагнитного и слабого взаимодействий (теория Глешоу Вайнберга — Салама). Наша формулировка неточна. На самом деле квантовая хромодинамика не вошла в арсенал достижений физики как теория, интерпретирующая взаимодействие кварков.

    Оказалось, что уравнения Янга — миллса хорошо хорошо описывают взаимодействие кварков в определенных границах, которые по существу являются пределами применимости квантовой хромодинамики. Частица со свойствами, весьма близкими к частице Янга — Миллса, получила название глюона и оказалась переносчиком сильного взаимодействия между кварками (см. Дополнение).

    В основе теории Янга — Миллса лежат калибровочные соотношения

    i g T(x) 1 ? a PSIG' = ? e||||||||, A' — > A + [aA] —- —--, (55)

    g ? x

    g=const, a=a(x).

    Соотношения (55) определяют уравнения Янга — Миллса и очень похожи на условия (48), (49) калибровочной инвариантности в электродинамике. Однако есть и два существенных отличия: 1) в уравнениях (55) T(x) не число, а квадратная матрица и 2) в условие преобразования вектор-потенциала A входит дополнительный член [a,A] (наличие такого члена приводит к тому, что вектор A не только инвариантен относительно смещения, но и относительно вращения в изотопическом пространстве). Эти две, казалось бы, несущественные особенности радикально отличают уравнения Янга — Миллса от уравнений электродинамики.

    Отметим в них то, что нам потребуется в дальнейшем. Во-первых, свойства матриц T существенно отличаются от свойств алгебраических чисел ALPHA. Числа характеризуются свойствами коммутативности (ALPHA|ALPHA| — ALPHA|ALPHA| =

    1 2 2 1 0). Матрицы этим свойством не обладают (вообще говоря, T|T| — T|T| ? 0). 1 2 2 1

    Инвариантность (55) функции ? требует введения уже

    1 не одномерного пространства S|, а многомерного. Например, если матрица T двумерна, то соответствующее ей пространства

    3 — трехмерная сфера S|. Соотношение между размерностями матрицы (n) и соответствующего ей пространства (N) определяется квантовомеханическим условием унитарности: N=n**2–1 (n?2).

    Для понимания дальнейшего целесообразно вначале ограничиться геометрической интерпретацией электрослабого взаимодействия.

    Известно, что слабое взаимодействие характеризуется

    ± 0 тремя частицами-переносчиками — тяжелыми W||- и Z|-бозонами, образующими изотопический триплет. Изотопический триплет соответствует трем независимым направлениями вектора состояния в изотопическом пространстве. Поэтому для своего геометрического описания этот триплет требует трехмерную

    3 сферу S|.

    Электромагнитное взаимодействие (изотопический спин фотона

    1 равен нулю) описывается сферой S|. Поэтому может показаться, что для совместного описания электрослабого

    3 взаимодействия могут потребоваться и сфера S| и сфера

    1 3 1 (окружность) S| (прямое произведение S| x S|). Однако ясно,

    3 1 что сфера S| уже включает окружность S| — она состоит из бесконечной совокупности окружностей. Поэтому может опять возникнуть неверное впечатление, что для описания

    3 электрослабого взаимодействия достаточно одной сферы S|, уже

    1 включающей окружность S|. В действительности такая процедура слишком упрощена. Выше отмечалось, что окружность

    1 (сфера S|) обладает среди сфер уникальной особенностью: лишь

    1 в пределах сферы S| два последовательных вращения коммутативны, что отражается в разнице правил коммутации двух чисел и двух матриц. Суммарное вращение в пределах окружности не зависит от порядка, в котором вращается вектор состояния. Окончательный результат не зависит от того, в каком порядке пробегает вектор состояния два угла (ALPHA|,

    1 ALPHA|) вдоль окружности. Суммарный угол в любом случае

    2 равен ALPHA| + ALPHA| = ALPHA| + ALPHA|.

    1 2 2 1

    Совершенно иная ситуация возникает при вращении в

    N сферах S| (N?2) высших размерностей. В этом случае суммарное вращение зависит от порядка, что символически можно записать в форме ALPHA| + ALPHA| = ALPHA| + ALPHA|.

    1 2 2 1 Подобное различие в свойствах коммутативности обуславливает кардинальную разницу между уравнениями электродинамики и

    1 уравнениями Янга — Миллса. Поэтому включение окружности S| в

    3 сферу S| неправомочно.

    Однако вполне оправдана несколько иная операция:

    1 выделения некоторой окружности S| и использования ее в

    3 дальнейшем для построения сферы S|. Иначе говоря, разбиения

    3 1 2 сферы S| на две: S| и S|. В стандартных обозначениях такое

    3 1 2 разбиение имеет вид S| = S| + S|. Это произведение двух сфер и есть геометрическая интерпретация электрослабого взаимодействия. Наглядно ее можно попытаться представить как пространство Минковского (Римана), в каждой точке которого в определенном взаимоотношении «прикреплены» окружности и сферы одинакового радиуса.

    По аналогии с геометрической интерпретацией электрослабого взаимодействия можно геометрически интерпретировать объединение сильного, слабого и электромагнитного взаимодействия (большое объединение).

    Квантовая хромодинамика определяется группой SU(3), соответствующей 3-мерному комплексному пространству (матрица T 3-мерна). Учитывая квантовое условие унитарности (см. выше), размерность соответствующего пространства равна восьми. Эту размерность можно уменьшить до семи, используя свойства проективных пространств, когда одна из размерностей стягивается в точку. В проективной геометрии все точки, координаты которых пропорциональны (отличаются одним и тем же числовым множителем), принимаются за одну точку. Иначе говоря, все точки с координатами bx|, bx|…, bx| (b

    1 2 N действительное число, принимающее различные значения) рассматриваются как одна. Это означает, что в рамках проективной геометрии прямая эквивалентна точке, что является отражением принципа двойственности. Поэтому проективное пространство с размерностью N в известном смысле эквивалентно обычному пространству с размерностью N+1, а

    2 2 1 1 произведение пространств CP| x S| x S| (CP| — проективное двумерное комплексное пространство, эквивалентное 4-мерному действительному пространству) эквивалентно изотопическим пространствам, отражающим все три взаимодействия: сильное

    1 (SU(3)), слабое (SU(2)) и электромагнитное (S|).

    Итак, изотопическое пространство большого объединения интерпретируется 7-мерным компактным ограниченным по объему

    2 2 1 пространством CP| x S| x S|. Здесь возникает естественный

    2 2 1 вопрос, является ли компактный слой CP| x S| x S| единственным геометрическим отображением всех взаимодействий, кроме гравитационного. На этот вопрос следует отрицательный ответ, имеющий два аспекта: геометрический и физический.

    Геометрический сводится к тому, что представление трех

    2 2 1 взаимодействий в виде произведения CP| x S| x S| неоднозначно. Их можно представить, например, в виде произведения двух сфер разной размерности, но так, чтобы суммарная размерность была бы больше шести. Динамическая неоднозначность определяется опытом. Нет доказательств отсутствия сверхслабых (незарегистрированных до сих пор) взаимодействий, которые могут усложнить структуру слоев.

    Таким образом, объединение всех четырех взаимодействий можно интерпретировать как расслоенное пространство с базой — 4-мерным пространством Римана и 7-мерным слоем чрезвычайно малых размеров. Эти размеры определяются по порядку величины из соображений размерности (величина, имеющая размерность длины и образованная из универсальных фундаментальных постоянных G, h и c) и значения константы объединенного взаимодействия. Оба подхода приводят к значению радиуса r|

    c компактных компактных размерностей, равного планковским размерам (см.(54)). Разумеется, значение r| ~ l| ~ 10**-33

    c p см — это лишь порядок величины и причем весьма грубый, компактных слоев. Нельзя, например, исключить, что r| ~ l|/ALPHA| ~ 10**-31 см. c p e

    Возникает вопрос, можно ли (хотя бы в принципе оценить на опыте значение величины r|. Пока просматривается лишь

    c единственный подход — обнаружение распада протона. Если это явление будет обнаружено, то можно утверждать, что приведенная геометрическая интерпретация верна при r| ~< 10**-30 см. В противном случае (r| >> 10**-30 см) c c теоретические оценки времени жизни протона становятся неправомочными. Непосредственное же измерение величины r|

    c (например, на ускорителях), кажется нереалистичным. Сейчас исследовалась динамика вплоть до расстояний ~10**-16 см. Увеличить эти оценки на два-три порядка очень сложно, хотя принципиально и возможно. Путей же к исследованию на ускорителях свойств пространства на расстояниях << 10**-20 см сейчас не видно.

    В этой связи возникает вопрос, полезен ли акцент на исследование «истинной» физической геометрии. Это важнейший вопрос. И краткий ответ на него таков. Да, нужно. Нужно потому, что, хотя в нашем распоряжении и нет прямых методов изучения компактных размерностей, существует много косвенных доводов в пользу того, что наблюдаемое физическое пространство (и в первую очередь его размерность) не есть «истинное» пространство Вселенной. Анализу этих аргументов посвящается гл.3 книги. Следовательно, есть серьезное основание полагать, что многомерное расслоенное пространство с компактными размерностями есть физическая реальность.

    10. ПЛАНКОВСКАЯ ФИЗИКА. ЯВЛЯЕТСЯ ЛИ ТОЧКА ОСНОВНЫМ ЭЛЕМЕНТОМ ФИЗИЧЕСКОЙ ГЕОМЕТРИИ?

    Сейчас, по всеобщему убеждению специалистов, при планковских параметрах l~l|, t~t|, M~M| формируется «истинная» физика в том смысле, что понимание происходящих процессов в этой области приведет к построению единой теории поля, квантовой теории гравитации, созданию теории происхождения Метагалактики (а может быть, и Вселенной) и количественному представлению физической геометрии. Меньше внимания (и, по мнению автора, незаслуженно) уделяется перспективам понимания природы фундаментальных физических констант.

    Возникает видимое противоречие между нашими стремлениями завершить стройную конструкцию физики и наблюдательными возможностями, весьма скромными сравнительно с планковскими параметрами.

    До сих пор физический эксперимент и теория дополняли друг друга. Однако идея об определяющем значении планковских параметров (которую мы назовем планковской физикой) обрекает нас, по крайней мере в настоящее время, на разрыв с этим принципом, на котором базировалась физика как эмпирическая наука.

    Сейчас можно наметить лишь некоторые косвенные эмпирические подходы к планковским параметрам. Прежде всего следует отметить гипотетический распад протона. Если нам повезет и распад будет обнаружен, то мы приоткроем окно в мир энергий ~10**15 ГэВ и расстояний ~10**-29 см, что «всего» на три-четыре порядка отличается от планковских параметров. Если нам повезет вдвойне и окажется, что на характеристики распада протона влияет гравитация, то это может послужить эмпирическим базисом для изучения планковской физики.

    Второй подход связан с уникальностью значений фундаментальных постоянных, в том числе и размерности пространства. Если вся физика формируется при планковских параметрах, то и хорошо изученные на опыте фундаментальные постоянные также должны быть связаны с этими параметрами.

    Многие теоретики возлагают большие надежды на третий подход к «экспериментальному» исследованию фундаментальной физики при планковских параметрах. Крайне вероятно, что Метагалактика в процессе своей эволюции прошла через область, принадлежащую компетенции планковской физики. Изучение реликтовых следов этого процесса должно способствовать проверке планковской физики. Частично этот подход рассматривается в гл.3 нашей книги.

    К сожалению, все отмеченные подходы к проверке планковской физики имеют более или менее косвенный характер. Самая прямолинейная проверка — эмпирическое воспроизведение акта рождения Метагалактики — выше человеческих возможностей.

    Однако на путях создания объединенной теории поля и подступах к планковской физике возник в некотором смысле не физический, а математический подход. Его нельзя назвать совершенно новым, поскольку в иной модификации он появился вместе с рождением квантовой теории поля много десятилетий тому назад. Кратко его можно сформулировать в одной фразе: «Правильная теория не должна содержать бесконечностей». Этот тезис появился на заре создания квантовой электродинамики. Частично решение проблемы устранения бесконечностей было найдено в конце сороковых годов Р.Фейнманом, Ю.Швингером и С.Томонагой (так называемый метод перенормировок). Однако предложенный метод не устранял полностью все бесконечности, да и сами логические его основы оставляли желать лучшего. По меткому замечанию одного из создателей новой электродинамики — Р.Фейнмана, метод перенормировок — это способ «убирания мусора под ковер». За истекшие десятилетия продвижение в устранении бесконечностей в рамках квантовой электродинамики как изолированной теории было сравнительно невелико. Однако известный прогресс наметился в процессе создания единой теории взаимодействий, когда суммирование бесконечностей от разных взаимодействий привело к конечным результатам. Этот факт вселил надежду, что объединенная теория не должна содержать бесконечностей. конечность всех результатов — критерий истинности объединенной теории. Математическая форма этого критерия, с одной стороны, и относительно малый эмпирический фундамент планковской физики — с другой, стимулировали огромный поток работ, содержащих новые гипотезы и развитие новых методов математической физики. Выживаемость этих подходов может проверить только время. Здесь мы упомянем лишь некоторые из них, руководствуясь в первую очередь их доступностью и популярностью.

    Дж. Уилер полагал, что на малых расстояниях должна существенно усложниться геометрия (топология) физического пространства. В общем виде такая гипотеза кажется весьма правдоподобной, однако конкретное ее воплощение, предложенное Уилером, по-видимому, неверно, поскольку оно не учитывает квантовых свойств элементарных частиц (в частности, их спинов) и разнообразие типов взаимодействий.

    М.А.Марков предложил модифицировать уравнения ОТО таким образом, чтобы при M << M| модифицированные уравнения и

    p уравнения ОТО совпадали, а при M>~ M| гравитационное

    p взаимодействие исчезало и взаимодействие в уравнениях ОТО описывалось бы исключительно ?-членом, что соответствует вакуумному состоянию (см. разд.5 гл.3).

    Б. де Витт и С.Хокинг предлагают сложную процедуру квантования с учетом различных возможных топологий в планковской области.

    Но, пожалуй, наиболее популярной в настоящее время является гипотеза о том, что элементарным физико-геометрическим объектом является не точка, а струна. Реально сейчас говорят о так называемых суперструнах, однако, чтобы чрезмерно не усложнять изложение введением новых и весьма непривычных понятий, мы будем использовать образ обычной струны. Одной из главных причин, вызвавших появление этого образа, является известный экспериментальный факт — ненаблюдаемость кварков. В соответствии с кварковой гипотезой адроны состоят из кварков (см. Дополнение), которые обречены на пленение в пределах адронов. Рассмотрим для простоты бозон-систему, состоящую из двух кварков. Тогда, полагая, что силы, связывающие оба кварка, подобны натяжению струны, нетрудно объяснить невылетание кварков, допуская, что натяжение пропорционально расстоянию между кварками. В этом случае, чтобы раздвинуть кварки на расстояние l, затрачивается энергия, пропорциональная l. Следовательно, чтобы вынудить кварк покинуть адрон (что соответствует расстоянию l, равному бесконечности), нужно затратить бесконечную энергию, что и определяет невылетание кварков.

    Весьма популярный в настоящее время образ суперструн аналогичен струнам, возникшим при описании сильного взаимодействия, с одним существенным различием. Суперструны — объекты с протяженностью порядка планковской длины, и они соответствуют объединению всех взаимодействий, включая гравитацию.

    В рамках теории суперструн наметился известный прогресс в устранении бесконечностей в теории поля, были получены характеристики некоторых фундаментальных частиц и т. д.

    Эти достижения вселяют надежду на то, что элементарным блоком в физической геометрии является точка, а одномерное образование — струна.

    В струнной геометродинамике существует один замечательный факт. На начальном этапе развития струнной теории умели квантовать лишь в том случае, если струна вложена в пространство с размерностью N=26.

    Сейчас, после разработки более совершенных методов и перехода к планковским масштабам, эту операцию научились производить при критической размерности N=10. Такое значение почти совпадает с размерностью N=11 пространства Калуца-Клейна (см. разд.7 гл.3), соответствующего геометрической интерпретации объединения всех четырех взаимодействий.

    Естественен вопрос: не являются ли струнная геометродинамика и геометрическая интерпретация объединенного взаимодействия a la Калуца-Клейна разными проявлениями одной и той же субстанции?

    Струна, свернутая в замкнутую окружность, образует сферу S|. Из множества таких окружностей можно получить

    1 сферу любой размерности или другие геометрические фигуры.

    Возможность объединения обоих направлений (струнной геометрии и геометрии Калуца-Клейна) является весьма соблазнительной. И хотя оба направления развиваются почти параллельно, кажется, что их слияние будет весьма серьезным шагом на пути решения проблемы планковской физики. Сейчас предпринимаются первые попытки в этом направлении.


    Примечания:



    1

    Важно отметить, что в последнее время в физике микромира развиваются представления о том, что основным элементом геометрии — точкой — являются линейные элементы. Подробнее об этом см. разд. 10, гл. 2.



    6

    Более подробно о взаимосвязи между ньютоновской динамикой и евклидовым пространством см. в кн.: Яглом И.М. Принцип относительности Галилея и неевклидова геометрия. М.: Наука. 1969.



    7

    Строго говоря, здесь пренебрегается возможным вращением системы. Обобщение рассуждений, учитывающих вращение, не представляет трудностей.



    8

    Подробнее доказательство этого утверждения представлено в кн.: Ландау Л.Д., Лифшиц Е.М. Теория поля. 6-е изд. М.: Наука, 1973, С.16.



    9

    Напоминаем, что группой называется совокупность математических объектов, для которых определена некая операция, иногда называемая умножением. Группа определена, если выполняются следующие условия: 1) если a, b элементы группы, то произведение a*b — также элемент группы; 2) (a*b)*c=a*(b*c); существует единичный элемент I, такой, что для любого элемента выполняется равенство I*a=a*I=a; существует обратный элемент a**-1: a*a**-1=I.



    10

    Количественно эта проблема не решена полностью и сейчас, хотя невылетание кварков реализуется в рамках некоторых упрощенных моделей.



    11

    Наиболее просто взаимосвязь условия m||||| = 0 и GAMMA калибровочной инвариантности показана в ст.: Вайнберг С. Свет как фундаментальная частица//УФН. 1976. Т.120. С.677. Подробнее о калибровочной инвариантности см. в кн.: Коноплева Н.П. Попов В.Н. Калибровочные поля. М.: Атомиздат. 1980; Окунь Л.Б. Физика элементарных частиц. М.: Наука, 1984.



    12

    На теоретико-групповом языке изотопический и обычный спины соответствуют неприводимым представлениям группы SU(2) (SU — аббревиатура слов: специальная, унитарная. Символ 2 обозначает, что группа соответствует двумерному комплексному пространству).



    13

    Вывод уравнений электродинамики из метрики (53) см. в ст.: Ходос А. Теории Калуцы-Клейна: общий обзор // УФН. 1985. Т.146, #4, С.647.



    14

    Планковские величины были впервые предложены М.Планком в докладе на заседании немецкой Академии наук в 1899 г. Подробно история возникновения планковской системы единиц была изложена в ст.: Горелик Г.Е. Первые шаги квантовой гравитации и планковские величины // Эйнштейновский сборник, 1978–1979. М.: Наука, 1983, С.334.









    Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное

    Все материалы представлены для ознакомления и принадлежат их авторам.