Онлайн библиотека PLAM.RU


  • Глава 1. От чуда к явлению
  • Когда родилась наука?
  • В Древнем Милете
  • Аристотель
  • Лукреций Кар и его поэма «О природе вещей»
  • Глава 2. Явления природные и… рукотворные
  • Тайна путеводной звезды и врачебного магнита
  • Долгий вечер в Виндзоре
  • Почему Земля – магнит?
  • Бургомистр Магдебурга
  • Как возникла Солнечная система?
  • Глава 3. От явления к эксперименту
  • Фрэнсис Гауксби, «F. R. S.», демонстрирует «эффлувиум»
  • Хорошие и плохие проводники сэра Стефана Грея
  • О «стеклянном» и «смоляном» электричестве
  • Тайна электризации
  • Глава 4. Опасное родство
  • Двойное рождение
  • Скажите, вы боитесь грозы?
  • Великий гражданин Америки
  • Господа профессоры Императорской Санкт-Петербургской академии наук
  • «Белые пятна» на карте науки
  • ВРЕМЯ МИФОВ

    Глава 1. От чуда к явлению

    Когда родилась наука?

    Ответить на этот вопрос, наверное, так же трудно, как сказать, с чего начинается великая река. Тысячи ручейков должны слиться вместе, чтобы образовался могучий поток, несущий свои воды к морю.

    Наука – важнейшая сфера деятельности человека. Результатом ее является система объективных знаний об окружающей действительности. Объективные – значит, не зависящие от наших с вами чувств, от желаний и вкусов, от сложившейся обстановки в обществе. Скорее всего, сначала в общую систему знаний входили индивидуальные навыки и умения. Одни люди лучше других отыскивали съедобные коренья и разводили огонь. Другие умели плести корзины, изготавливать копья, дротики, обжигать горшки.



    Устройство для полива в Древнем Египте


    Охота и заготовка пищи для племени, земледелие в наносных долинах рек побудили людей к объединению и совместному труду. А необходимость распределять пищу и воду между ними образовала основы социального порядка.

    Для закрепления установленных правил и для придания им незыблемого авторитета служили мифы, то есть предания о богах и героях, о демонах и духах, наполнявших мир своей волей, своими желаниями и подвигами. Все зависело от них. Мифы рассказывали, как был добыт огонь, как произошли ремесла, как по воле богов возникли обычаи и обряды. Мифы отвечали на вечные вопросы о происхождении светил и Вселенной, о рождении человека и появлении на Земле животных, растений и рыб. Мифы породили, с одной стороны, основы религиозных воззрений, а с другой – первые научные теории. Нагляднее всего это представлено в достижениях античной цивилизации.

    В Древнем Милете

    Рассказывают, что однажды к древнегреческому философу Фалесу, жившему в городе Милете, пришла дочь и протянула ему веретено, сделанное из драгоценного камня – электрона. Мы называем его янтарем. В те далекие времена финикийские купцы изредка привозили изделия из этого желтого, прозрачного, как первый лесной мед, камня в греческие города. По-видимому, купил его и Фалес, прельстившись красотой. Купил и подарил дочери. В древности гречанок с юных лет приучали к прядению.

    Дочь философа оказалась девушкой наблюдательной. Она рассказала отцу, что не раз, уронив веретено на пол, терла его, чтобы очистить от приставшего сора. Но при этом упрямое веретено только сильнее притягивало к себе пылинки и нити. Отчего так?..

    Подивился мудрец феномену, порадовался любознательности дочки. Однако ответить не смог и задумался. Так, бывает, набредет человек на пустяковую, кажется, загадку, и не дает она ему покоя. Девушка уже давно скрылась в женской половине дома – гинекее, а Фалес все сидел, размышляя над ее вопросом.

    Финикийцы уверяли, что рождается прозрачный янтарь в холодных водах северных морей, где даже солнечные лучи сворачиваются в узел, застывая в прозрачные янтарные камни. Такие рассказы философ слышал и раньше, но о свойстве притягивать мелкие частицы узнал впервые. Бывалые люди говорили, что свойством притягивать к себе железо славятся черные камни из страны Магнезии, населенной племенами магнетов, что черные камни тянутся к железу, питая к нему по воле богов склонность. Кто не знает, что железо благородно? Видимо, в магните скрыта живая душа… Ведь только живое способно испытывать склонность и порождать движение. Почему же янтарное веретено питает любовь к простому сору? Может быть, одушевлен и янтарь?..



    Изготовление металлических изделий в Древнем Египте


    Солнце закатилось, пришло время кликнуть раба, чтобы тот принес светильник. Но философ не сделал этого. В наступившей темноте он обнаружил, что если потереть веретено рукой, оно покрывается крошечными голубыми искорками, которые вспыхивают и гаснут с легким треском. Новая загадка.

    Снова и снова трет Фалес оставленный дочерью янтарный стержень сухими ладонями и глядит, не может наглядеться. Сегодня он покажет это чудо ученикам и попробует порассуждать о нем. Может быть, логика приведет его к истине… Под покровом ночи сходятся ученики к дому мудреца. Собираться днем опасно. Славному торговому городу-государству Милету слишком часто приходится браться за оружие. То лидийские цари, то персы подступают к его стенам. Учить мудрости – неблагодарное занятие. Сильные мира сего не любят чересчур умных. Вот почему собирать учеников Фалес предпочитал по ночам.

    Сегодня он решил в ходе логических рассуждений вывести причины двух явлений: притяжения янтарем легких телец и рождения искр холодного голубого огня под его ладонью. Один ответ – одушевленность янтаря – у него уже был.

    В годы, когда жил Фалес, главный тон среди софистов – учителей мудрости – задавали орфики, последователи учения о душе как о частице божества; тело же они воспринимали как «темницу души». И потому божественная сущность души была у всех на языке. Фалес не отрицал существования богов. Но он не мог согласиться с тем, что каждое явление, каждое свойство предмета является проявлением воли богов. Философ считал одушевленным весь мир – воду, камни и землю. «Душа, – говорил он, – размещена во всем мироздании. У каждого предмета – своя душа, свои неизменные свойства». Разве не является доказательством этого постоянство притяжения железа магнитом, а легкого сора – натертым янтарем?..

    Кем был этот удивительный философ, задумавший освободить природу от капризной воли богов, а философию – от мифов? В книге Диогена Лаэртского «О жизни, учениях и изречениях знаменитых философов» сказано: «Фалес… был сын Эксамия и Клеобулины из рода Фелидов, а род этот финикийский, знатнейший среди потомков Кадма и Агенора. Он был одним из семи мудрецов, что подтверждает и Платон; и когда при афинском архонте Дамасии эти семеро получили именование мудрецов, он получил такое имя первым».

    По более поздним источникам, Фалес из Милета, родившийся в 625 году до нашей эры, – богатый купец, который много путешествовал, бывал в Египте, где, по-видимому от жрецов, получил знания по математике и астрономии. Он первым упоминает о свойстве натертого янтаря притягивать легкие тела и о свойстве магнита притягивать железо. Он учил, что все сущее неуничтожимо и меняются лишь его качества при превращениях…

    Когда мы говорим о том, что Фалес и другие греческие философы пытались объяснять явления природы без помощи богов, это вовсе не значит, что они были атеистами. Философы лишь пытались искать причины происходящего в природе, исходя из ее души, из ее собственных свойств, а не из волеизъявления высших сил. Потому-то их и назвали натурфилософами, от латинского слова natura – природа.



    Греческая триера


    Древнегреческие натурфилософы стремились охватить единым взглядом не отдельные детали, как это делает современная наука, а всю картину мира. Истолковать сразу всю природу целиком, проникнуть в заповедные тайны первоначал и первопричин всего сущего. При этом они объединяли явления по сходству внешних проявлений. В том числе таких, как притяжение одних предметов и тел другими. Немудрено, что в один ряд попадали притяжение и магнита, и Земли, притяжение янтарем мелкого сора и… бабочки – цветком. Задавая себе вопросы, отвечая на них, ошибаясь, философы учились рассуждать, учились мыслить, познавать. Ведь всякое познание начинается с сопоставления и объединения внешних качеств, с рассуждений о причинах тех или иных особенностей…

    Аристотель

    Древние греки называли город Афины «око Эллады». И действительно, город долгие годы являлся центром культурной и политической жизни всей Греции. Давайте мысленно перенесемся в утро за три с лишним века до нашей эры. Именно тогда с восходом солнца в Пирей, афинскую морскую гавань, вошла триера (так назывались суда с тремя рядами весел по борту и парусом).

    Пока матросы убирали снасти, на берег, сопровождаемый рабами, сошел пассажир. Немолодой, небольшого роста и, скорее, тщедушный, он не привлек особого внимания портовых зевак. Редкие волосы и колючий взгляд делали его облик неприятным, особенно когда его тонкие губы растягивались в насмешливой улыбке. Но одет он был в тогу с синей каймой и выступал в окружении спутников и рабов важно. Значит, был человеком с достатком. Примерно так мог выглядеть великий древнегреческий философ Аристотель. Несколько лет он был воспитателем Александра Македонского и теперь, получив заслуженную награду, вернулся в Афины.

    Здесь, неподалеку, он купил землю и основал свою школу. Позже она стала называться Ликеем.

    По утрам, окруженный избранными учениками, Аристотель прогуливался по дорожкам своего сада, вел дискуссии и пояснял наиболее запутанные вопросы логики и основ бытия – метафизики. Днем Аристотель размышлял, а по вечерам читал лекции для желающих.

    Порой в полдень раздавался стук в ворота и рабы-привратники впускали гонцов от бывшего ученика, ныне прославленного полководца Александра Македонского. Гонцы привозили подарки. Благодаря им Аристотель собрал великолепную библиотеку и настоящий музей. Невиданные растения, шкуры животных и просто диковинки из разных стран заполнили его комнаты. Многим из своих трудов по естественной истории Аристотель в немалой степени был обязан этим коллекциям. Не зря он учил, что настоящий философ и в капле должен уметь видеть отражение целого мира.



    Аристотель (384–322 гг. до н. э.)


    Но чего стоили все эти диковинки, если в движении обыкновенного камня больше тайн, чем во всех его экспонатах? Бросьте камень вверх, бросьте в сторону. В любом случае он упадет на землю. А почему? В чем причина падения? Какая сила притягивает все тела к Земле?.. Да и одна ли Земля притягивает? Вот, например, среди диковинок – геркулесов камень, которому поэт Еврипид дал название «магнит». Почему он притягивает к себе именно железо, и только железо? Почему прозрачный солнечный янтарь, будучи натерт, привлекает к себе легкие частицы сора?.. Помните, над этими же вопросами размышлял и философ Фалес из малоазийского города Милета. Фалес склонялся к мысли о живой душе камней и о взаимной симпатии. Аристотель был учеником Платона. Его учитель считал, что прообразами всех вещей являются идеи, сами же вещи – лишь их отражение. Любовь же к идее – основа всякого движения. Аристотель выдвинул понятие о целесообразности природы. В мире Аристотеля каждая вещь должна была знать свое место. Сдвинутая с него, она стремилась вернуться и занять его снова. Вот почему камень, подброшенный в воздух, возвращался к земле, а дождь падал вниз, чтобы соединиться с водами. Огонь, имеющий обиталище в небе, обязан был метать свои искры вверх. А к чему предназначены птицы? Конечно, чтобы летать. Рыбы – чтобы плавать… Кошки – ловить мышей… Так же и магнит предназначен притягивать железо, а солнечный камень янтарь – мелкие тельца. Все взаимодействия вещей зависят от того, к чему они предназначены. Прекрасное и, как может показаться, наивное объяснение. Но оно вовсе не такое простое.

    Древнегреческие натурфилософы стремились обойтись без помощи мифов и богов. Последователи Аристотеля, следуя его учению, старались объяснять наблюдаемые явления, пользуясь логическими рассуждениями – силлогизмами. Позже, с развитием экспериментального естествознания, ученые стали выводить законы природы не из логики и силлогистики Аристотеля, а основываясь на естественнонаучных данных.

    Лукреций Кар и его поэма «О природе вещей»

    В дальнейшем пальма первенства во всех отношениях перешла от Греции к Риму. Римляне освоили греческую культуру и пересадили ее на почву Италии. К сожалению, произошло это слишком поздно. Во-первых, сама цивилизация свободных городов-государств клонилась к упадку. Во-вторых, приняв внешнюю, парадную сторону греческой цивилизации, высшие классы римского общества в глубине души презирали своих учителей. Но если нет у учителя авторитета, ученики не воспримут от него ни знаний, ни морали.

    В Древнем мире начался период упадка знаний, в течение которого людям было, пожалуй, недосуг помнить о таких мелких вопросах, как причины притяжения магнита и янтаря.

    Может быть, и не стоило бы дальше говорить о тех ничтожных познаниях и нелепых на современный взгляд гипотезах, которые высказывались по интересующему нас вопросу за весь период, предшествующий началу подлинной науки, связанной с именами Гильберта и Галилея, Ньютона, Франклина и Ломоносова. Может быть, если бы не последний всплеск эллинской образованности в эпоху начавшегося упадка, если бы не поэма Тита Лукреция Кара «О природе вещей».

    О жизни Лукреция не сохранилось почти никаких сведений. Известно лишь, что был он уроженцем Рима, жил в первой половине I века до нашей эры, в трудное время обострения всех возможных противоречий своей эпохи. На время жизни Лукреция падают такие периоды, как кровавая диктатура реакционного лидера римских аристократов Луция Корнелия Суллы и борьба Суллы с Марием и Корнелием Цинной. В том же веке – восстание рабов под предводительством Спартака, потерпевшее жестокое поражение, борьба с морскими пиратами, бесконечные внешние войны, заговор и восстание Луция Сергия Катилины и, наконец, возвышение честолюбивого Гнея Помпея, жестокого Марка Лициния Красса, вначале тонкого дипломата, удачливого полководца, а в конце концов главы государства, императора Гая Юлия Цезаря. Бурное время. Существует предположение, что Лукреций получил философское образование в самой процветающей в то время в Италии неаполитанской эпикурейской школе. Закончив обучение, он начал писать философскую поэму «О природе вещей». В ней Лукреций систематически изложил весь античный материализм и особенно подробно – атомистическое учение Эпикура. Скорее всего, при его жизни поэма не была закончена. Отредактировал ее и опубликовал некто Квинт – брат честолюбивого оратора Марка Туллия Цицерона.

    В поэме Лукреция значительное место отводится объяснению свойств магнитов. Но не только это заставляет меня обратиться к ее бессмертным строкам. Поэма имеет самостоятельную ценность как литературное и философское произведение. Глубоко оптимистичный, материалистический характер ее впоследствии давал силы многим поколениям философов и ученых в самые трудные моменты гонений и собственных разочарований. И мне кажется, что знать хотя бы в общих чертах пути развития античной философии, и в том числе произведение Лукреция, важно для человека интеллигентного.

    Существует много разных переводов поэмы на русский язык. У меня в руках оказалась книга, изданная в знаменательном 1945 году и приуроченная к редкому юбилею – двухтысячелетию с момента смерти автора. И пусть вас не пугает большой отрывок, приведенный ниже. Прочтите его. И тогда, если вы не читали поэму раньше, вам, может быть, захочется познакомиться с нею целиком.

    Мне остается сказать, по какому закону природы
    Может железо к себе притягивать камень, который
    Греки «магнитом» зовут по названию месторожденья,
    Ибо находится он в пределах отчизны магнетов,
    Этому камню народ удивляется, ибо нередко
    Цепью звено к звену, от него исходя, повисает.
    Можно ведь видеть порой, что, качаясь от легкого ветра,
    Пять или больше таких свободно спускается звеньев,
    Все они вместе висят и, одно к одному прилепляясь,
    Камня силу и связь друг от друга тогда испытуют:
    Так его сила всегда беспрерывным вливается током…
    Так как теперь это все установлено твердо и точно,
    И основания все подготовлены нами, как должно,
    То остальному уже не трудно найти объясненье,
    И открываются все притяженья железа причины.
    Прежде всего, из магнита должны семена выделяться
    Множеством или же ток истекать, разбивая толчками
    Воздух, который везде между камнем лежит и железом.
    Только что станет пустым пространство меж ними, и много
    Места очистится там, как тотчас же, общею кучей,
    Первоначала туда стремглав понесутся железа;
    Следом затем и кольцо устремляется всем своим телом…
    …Что производит оно и мчится, пока не сойдется,
    С камнем самим и на нем не повиснет в невидимых узах.
    Это бывает везде, где только очистится место,
    И в направленьи любом, будь то в сторону или же кверху:
    Тотчас несутся тела в пустоту, находясь по соседству…
    Вовсе не надо тебе удивляться, что ток из магнита
    Не в состояньи совсем на другие воздействовать вещи.
    Частью их тяжесть стоять заставляет, – как золото, – частью
    Пористы телом они, и поэтому ток устремляться
    Может свободно сквозь них, никуда не толкая при этом;
    К этому роду вещей мы дерево можем причислить,
    Среднее место меж тем и другим занимает железо:
    Ежели примет в себя оно несколько телец из меди,
    То отгоняет его истечением камень магнитный.
    Вещи, в которых их ткань совпадает взаимно с другою,
    Так что, где выпуклость есть, у другой оказалась бы там же
    Впадина, – эта их связь окажется самою тесной.
    Есть и такие еще, что крючками и петлями будто
    Держатся крепко и так друг с другом сцепляются вместе.
    Это скорее всего происходит в железе с магнитом.

    Прекрасное объяснение, не правда ли? Но почему же, несмотря на все достижения эллинизма, перед человечеством не открылась широкая столбовая дорога к вершинам прогресса и мудрости, а настали «темные века» упадка цивилизации? На такой вопрос, пожалуй, коротко и однозначно не ответишь. Единственное предположение, возникающее у человека, знакомящегося с историей культуры, – это неизбежная цикличность развития. Исторический опыт показывает, что любая древняя цивилизация представляла собой некую систему. В процессе развития в ней накапливались неизживаемые противоречия. Накопленные противоречия воздействовали на структуры системы, изменяли ее качество, снижали жизнестойкость и в конце концов приводили всю систему к гибели.

    В этом отношении государства и цивилизации похожи на людей: они рождаются, проходят трудный период развития. Выжившие мужают, достигают расцвета и старятся. А потом умирают, и на смену им приходят другие государства и другие цивилизации, начинающие свой путь на ином витке спирали, но также со своими трудностями и ошибками начального периода.

    Уже к III веку нашей эры классическая цивилизация была обречена на гибель. Большая часть достигнутых знаний оказалась утраченной. Интерес к объяснению феноменов исчез.



    Древний афинский акрополь. Реконструкция

    1) Пиргос. 2) Храм Афины-Ники. 3) Пинакотека. 4) Промитей. 5) Статуя Афины-Воительницы. 6) Эрехтейон. 7) Парфенон


    Глубокий кризис охватил Древний мир. Классическая культура рухнула, и на ее обломках ярким цветом расцвели мистика и абсурд. Наступил распад экономики. Состоянием всеобщей разрухи воспользовались варвары-завоеватели. Они вторглись в пределы Римской империи и завершили уничтожение достижений цивилизации. Опустели и лишились надзора дороги, мосты, оросительные каналы и акведуки. Строения пришли в упадок и в большинстве своем исчезли.



    Китайский «указатель пути» и компас


    Впрочем, «мы склонны настолько преувеличивать интеллектуальные и художественные достижения греков, что трудно даже осознать, что их знания и искусство гораздо больше влияли на внешнюю сторону, чем на практические и материальные факторы жизни, – писал английский физик и философ Джон Десмонд Бернал. – …Это неудивительно, ибо наука развивалась богатыми гражданами в первую очередь не для целей практического ее применения, которое они презирали. Греческая математика, изысканная, пользующаяся исчерпывающим методом, могла применяться лишь для немногих практических целей из-за отсутствия как экспериментальной физики, так и точной механики. Основным плодом величественной греческой астрономии, не считая астрологических предсказаний, был хороший календарь и несколько маловажных карт. Великая колыбель практической астрономии – искусство мореплавания – из-за отсутствия судов и нежелания плавать по неизведанному океану почти не развивалась…Техника в противоположность науке сохранилась в лучшем виде и меньше потеряла».



    Врачебный магнитный браслет прошедших эпох



    Магнитные нагрудники


    Не следует думать, что в период раннего средневековья упадок цивилизации поразил весь мир. Даже в Римской империи сохранились нетронутыми такие большие города, как Александрия, Анти-охия и Константинополь. А за пределами территории, подвластной римским императорам, цивилизация продолжала развиваться. Например, Китай при династиях Вэй (386–535) и Тан (618–907) переживал подъем как в культурной, так и в экономической жизни. В Средней Азии в то же время процветало Хорезмское царство. Великие периоды были в эти века в Персии и Индии, в огромной империи Сасанидов, раскинувшейся в III–VII веках на Ближнем и Среднем Востоке.

    Так, скорее всего, из Китая пришел в Европу компас.

    Китай же подарил Европе кормовой руль на морские корабли, а Персия – ветряную мельницу. Китайский способ превращения вращательного движения в возвратно-поступательное позволил соорудить механический молот, а коленчатый рычаг – перейти обратно от возвратно-поступательного движения к вращательному.

    От арабов средневековые врачи узнали, что магнит уменьшает головную боль, успокаивает ноющие раны. Еще в глубокой древности эскулапы прописывали своим пациентам носить магнитные браслеты, нагрудники и накладки на ноги, шею и даже на голову. С Востока на Запад перекочевало такое важное изобретение, как лошадиный хомут, заменивший грудной ремень, который стягивал дыхательное горло животного. Хомут перенес главную часть давления на плечи и позволил в пять раз увеличить нагрузку лошади.

    Как теория не может развиваться без практики, так и практические навыки неизбежно подталкивают ум к теоретическим размышлениям. В 1269 году в Западной Европе появилась едва ли не первая самостоятельная научная работа Петра Перегрина из Марикура. Называлась она «Письма о магните». Но должно было пройти еще триста с лишним лет, прежде чем англичане Норман и Гильберт подхватили эту эстафету.

    Глава 2. Явления природные и… рукотворные

    Тайна путеводной звезды и врачебного магнита

    Свистит ветер в вантах. Гудят барабанным гулом паруса. С волны на волну переваливается тяжелый галеас, принадлежащий только что основанной Ост-Индской компании.

    Галеас, по сути, – большая галера, вернее, нечто среднее между гребным и парусным судном. В основном он считался военным кораблем и состоял на вооружении многих стран Европы в XVI–XVII веках.

    На высоком мостике капитан. Время от времени он сверяет курс по прибору, спрятанному в тяжелый ящик из мореного дуба. Там, на дне в закрытом сосуде плавает на куске легкой коры крохотная железная стрелка. Где бы ни скитался корабль, как бы ни трепали его жестокие штормы, черный конец стрелки упрямо тянется к путеводной Полярной звезде. Астрологи уверяют, что там, в небе, на конце хвоста Малой Медведицы, находится магнитный камень. К нему-то и тянутся все магниты Земли.

    Трудно сказать сегодня, кто первым придумал использовать магнит для указания верного пути в открытом океане. Может быть, китайцы, а может быть, финикийцы. В Европу «указатель пути» попал довольно поздно. Правда, уже в XI веке он был подробно описан в одном из манускриптов. А в XV веке, отправляясь на поиски Индии в Море мрака (как тогда называли Атлантический океан), магнитным указателем уже пользовался Колумб.



    Галеас XVII века


    Если заглянуть в вахтенный журнал нашего галеаса да разобрать каракули рук, не привычных к тонкому гусиному перу, можно установить, что корабль, о котором идет речь, направляется в королевство Английское, в славный торговый город Лондон. И что на дворе начало XVII века, а точнее, 1601 год, месяц февраль, а день 25-й…

    Не попробовать ли и нам на время представить себя на борту этой тяжелой и малоповоротливой парусно-гребной посудины? Что если и нам отважиться вместе с представителями Ост-Индской компании ступить на английскую землю? Мы попадем в царствование королевы Елизаветы, во времена Шекспира, Гарвея и Гильберта – трех первых Уильямов, принесших славу своему государству. Мы попадем в начало деятельности Фрэнсиса Бэкона – великого философа, перевернувшего мировоззрение целой эпохи.

    Итак, мы на галеасе. Под нашими ногами палуба – пятьдесят метров в длину, – не так мало для XVII века, не правда ли? Сотня гребцов-галерников. Кое-кто из них прикован к своим скамьям цепями – очевидно, каторжники. И над всем этим – три мачты с мощным парусным оснащением. Да еще пушки между гребцами. А на шканцах виднеются кирасы солдат. Прибрежные воды всюду кишат пиратами.



    Созвездие Малой Медведицы в старинном звездном атласе Яна Гевелия


    Но вот и берег. Слава Всевышнему! Корабль входит в устье Темзы. Пользуясь приливом, капитан направляет судно вверх по реке в Лондон. Наши спутники начинают готовиться к высадке. Последуем и мы их примеру.

    Прежде всего переоденемся. Лучше всего подойдет застегнутый доверху черный камзол с высокими оплечьями и длинными рукавами. Он толсто подбит ватой и туго-натуго простеган. К камзолу прилагаются толстые, словно сшитые из ватного одеяла, короткие панталоны. Еще надо надеть высокий накрахмаленный воротник, который режет шею, и толстый суконный плащ… Ну и мода! Но туго наваченный камзол и панталоны предохраняют от кинжала наемного убийцы. А в плаще запутается шпага противника при уличной ссоре.

    Неповоротливое судно уже у причала, и мы выходим в город. Не удивляйтесь узким улицам с канавами для нечистот. Мы с вами в Лондоне начала XVII века. Осторожно! Прижмитесь спиной к стене. Из-за поворота вылетели верховые. Они скачут, не разбирая дороги.



    Английский костюм конца XVI – начала XVII века


    Наш путь в Виндзор, именно там находится сейчас лейб-медик английской королевы Уильям Гильберт. Правильнее его, конечно, называть сэром Уильямом Гильбертом Колчестерским – так величают его пациенты. Но остановимся на том, что привычнее.

    Виндзор – красивейшее место в графстве Беркс. От центра Лондона примерно километров двадцать. Здесь, на правом берегу Темзы, еще в XI веке Вильгельм Завоеватель построил замок. Потом его много раз перестраивали, украшали. И в конце концов Виндзор сделался любимым местом жительства английских королей.

    Ныне доктор Гильберт должен показывать ее величеству магнитные опыты. Вы спросите, какое отношение придворный врач имеет к магниту? Самое непосредственное! Год назад, в 1600 году, из-под печатного пресса вышел его обширный труд «О магните, магнитных телах и о большом магните – Земле. Новая физиология, доказанная множеством аргументов и опытов». Шесть книг, написанных на прекрасном латинском языке.

    Вам не совсем понятно, почему лейб-медик занимается исследованиями магнита? Сейчас попробую объяснить.



    Ковка железа и превращение его в магнит


    Дело в том, что о магните с незапамятных времен ходили самые невероятные слухи. Знахари шептали, что магнит возвращает молодость, красоту и здоровье. Об этом писал даже сам великий Ге-бер – алхимик и врач, живший на рубеже VIII и IX веков. Был он арабом, и его настоящее имя звучало как Джабир ибн Хайян, латинисты переделали его в Гебера. Писал о магните и другой арабский ученый – знаменитый Аверроэс, настоящее имя которого тоже звучало непривычно для европейского уха – Абуль-Валид Мухаммед ибн Ахмед ибн Мухаммед ибн Рошд. Он жил в XII веке в Кордове и Севилье и, как все средневековые лекари, уверял, что толченый магнитный камень с водой – прекрасное слабительное.

    Обо всем этом Гильберт знал. А поскольку семидесятилетнюю королеву не могла не волновать проблема сохранения молодости и красоты, залогом чего, как известно, является исправное функционирование желудка, ее придворный врач просто обязан был изучать свойства магнита.

    Магнетизм был одним из самых таинственных природных явлений. Почему, к примеру, если расположить раскаленную железную полосу на наковальне строго с севера на юг, то откованное железо оказывается намагниченным? А стоит изменить направление этой полосы, сколько ни стучи молотом, никаких магнитных свойств она не приобретет.

    Отдадим Гильберту должное. После многолетних опытов он осмелился, несмотря на авторитеты, утверждать, что прием толченого магнитного камня внутрь «вызывает мучительные боли во внутренностях, чесотку рта и языка, ослабление и сухотку членов». Правда, при этом и он не отрицал, что магнит «возвращает красоту и здоровье девушкам, страдающим бледностью и дурным цветом лица, так как он сильно сушит и стягивает, не причиняя вреда». Врач обязан быть не только образованным, но и осторожным человеком.



    Уильям Гильберт Колчестерский (1544–1603)


    Вы скажете: он противоречит самому себе! Правильно, но его последнее утверждение могло быть и данью авторитетам, и маленькой ложью во спасение. Представьте на минутку себя на месте королевы. Многие годы ваш лейб-медик занимается какими-то опытами, уверяя, что ищет способ сохранить ваше августейшее здоровье. И за это вы платите ему вполне приличное вознаграждение. Затем, много лет спустя, он выпускает в свет научный труд, из которого становится ясно, что лекарства, коими он вас пользовал, на деле могут только ухудшать самочувствие. Боюсь, что после этого лейб-медику не поздоровится. Гильберт был умен и не понимать этого не мог.

    Ну а теперь, уяснив себе состояние дел и познакомившись заочно с нашим героем, отправимся в Виндзор…

    Долгий вечер в Виндзоре

    Мы не станем объяснять, как нам удалось попасть в небольшое общество, которое собралось в покоях королевы. Главное – мы в числе приглашенных и никого не удивляет наше присутствие.

    В Виндзоре всегда весело: охоты, театральные представления, торжественные приемы. Правда, возраст королевы Елизаветы уже не тот, и она предпочитает тихие развлечения. Потому и решено под вечер устроить демонстрацию чудес доктора Гильберта.

    С большинством кавалеров и дам мы незнакомы, но кое-кого узнаём. Вот, например, главное, как нам кажется, действующее лицо: высокий шестидесятилетний джентльмен. Он слегка лысоват. Бритый подбородок выдает в нем человека, не принадлежащего к придворной аристократии. Одет он скромно: в черный атласный камзол с испанским воротником и в плащ, наброшенный на плечи. Висячие усы не позволяют заподозрить в нем и священника.

    Это сам доктор Уильям Гильберт. Он переставляет различные предметы на столе, приготовленном для опытов. Все ждут королеву.

    А вот среди гостей и еще знакомое лицо: высокий лоб, внимательные глаза, горящие внутренним беспокойством. Человеку немного за сорок. По сравнению с остальными он молод. Пышные кружева подпирают аккуратную бородку. Пожалуй, костюм и облик выдают его некоторое тщеславие, а манера держаться – честолюбие. Но есть в нем одновременно и что-то виноватое. Это Фрэнсис Бэкон – младший сын лорда-хранителя печати и всего-навсего солиситор – стряпчий лондонского суда. Странно, что он оказался здесь. Канцлер казначейства да и влиятельный лорд Бурлей – муж его тетки – не очень-то жалуют молодого Бэкона. Один считает его опасным оппозиционером, другой – просто «мечтателем». Сюда, на ученый вечер, он, скорее всего, приглашен как философ.



    Фрэнсис Бэкон (1561–1626)


    Королева Елизавета I вошла и тихо опустилась в приготовленное кресло у камина. Вечером особенно заметно, как она немолода. Кажется, что веснушки и темные пятна с возрастом расплылись и создали общий нездоровый фон и без того не слишком красивого ее лица. Прическа из рыжеватых, густо выбеленных сединой волос, перевитых жемчугом, поредела. Голова ее все еще высоко поднята. Но не заслуга ли это высокого воротника? И не тяжелое ли платье, расшитое золотом, не дает согнуться стану этой пожилой и усталой женщины? Впрочем, глаза у королевы зорки и блестят любопытством. Она махнула платком, давая знак начинать.

    – Ваше величество! – Гильберт говорил мягко, приятным голосом, как и подобает врачу. – Я собираюсь, если будет на то Божья воля, не умаляя заслуг тех, кто говорил о том до меня, изложить здесь перед вами открытую мною с помощью многих трудных и дорогостоящих экспериментов истину, которая противоречит мнению многих других философов, даже самых древних. Почему магнитная стрелка, применяемая на кораблях вашего доблестного флота, всегда показывает одно направление?.. Почему?

    Гильберт обвел взглядом собравшихся. Здесь самые мудрые люди королевства: тонкие политики, дипломаты, военачальники и флотоводцы. Что-то они ответят?

    – Позвольте, сэр Уильям. – Слово взял седобородый лорд Адмиралтейства. – Какая же это загадка? Всем морякам известно, что намагниченное железо направляется к северу, поскольку ему сообщается сила полярных звезд, подобно тому как за солнцем поворачивают свои головки цветы.

    Придворные одобрительно закивали головами. Говорящий прав – кто не знает, что в небе имеется большой магнитный камень?.. Лейб-медик взял со стола шар, выточенный из магнетита.

    – Ваше величество! Я не намереваюсь прибегать к измышлениям и утомительным умозаключениям. Мои аргументы, как вы легко можете видеть, основаны только на опыте, разуме и демонстрации. Этот шар, выточенный с немалыми расходами из магнитного камня, я назвал тереллой, что означает «маленькая Земля», «Земелька». Я подношу к ней магнитную стрелку – и вы видите?.. Джентльмены, все видят, как один конец стрелки притягивается к одному полюсу тереллы, а второй – к другому?.. Не так ли ведут себя и стрелки компасов, установленных на кораблях флота ее величества? И не значит ли это, что вся наша Земля является неким большим магнитом?..



    Английская королева Елизавета I (1533–1603)


    Придворные переговаривались: «Сэру Уильяму не откажешь в проницательности и ловкости в доказательствах». А Гильберт продолжал:

    – Век мудрого правления вашего величества даровал человечеству неисчислимые богатства: открыт Новый Свет, изобретено книгопечатание, телескоп, компас. Эти открытия стали источниками нового могущества, открыли новые горизонты, но в то же время предложили человеческому гению и новые задачи. Как решить их? Здесь поможет только опыт…

    – Доктор Гильберт совершенно прав, когда говорит об опыте! Однако опыт опыту – рознь.

    Придворные и даже сама королева повернули головы на голос. Ах, это всего лишь чрезвычайный адвокат короны, нищий философ Фрэнсис Бэкон. Вечно он вмешивается, старается показать свой ум. Тем временем, заметив всеобщее внимание, Бэкон продолжил:

    – Опыт есть основа науки. Но какой опыт? Разве количество бессистемно проделанных экспериментов приводит к пополнению копилки знаний? Надо не просто увеличивать количество опытов, а создать новый метод. И опираясь на него, выработать правила для произведения опытов. Только тогда они приведут к изобретению нового. А изобретение – высшая цель науки. Экспериментирование же наугад лишь вводит в заблуждение, а не просвещает людей…

    Гильберт казался спокойным, хотя его руки задрожали.

    – Если ваше величество позволит мне продолжить, то, возможно, я своими опытами сумею ответить сэру Фрэнсису.



    Терелла Гильберта



    Компас Гильберта


    Придворные перешептывались. Лорд-канцлер, наклонившись к королеве, говорил ей что-то на ухо. Глаза Елизаветы блестели. Она обожала споры. Конечно, если они не затрагивали интересов короны и государства.

    – Продолжайте, сэр Уильям!

    Гильберт стал водить магнитной стрелкой по поверхности тереллы.

    – Взгляните, ваше величество, на разном отдалении от полюсов стрелка по-разному наклоняется, изменяя свое горизонтальное положение. Это обстоятельство было замечено еще двадцать лет назад верным подданным вашего величества, мореходом и строителем компасов Робертом Норманом. Он открыл наклонение магнитной стрелки к горизонту и тем самым доказал, что точка притяжения для нее находится не на небе. – Гильберт слегка поклонился в сторону лорда Адмиралтейства (зачем наживать себе врагов при дворе!), – …а на земле.

    Его слова заставили протиснуться вперед двух адмиралов. Их интересует: нельзя ли использовать способность магнитной стрелки не только для указания направления север-юг, но и для определения местонахождения корабля в открытом море?

    – Наши моряки верят, что магнитную стрелку притягивают громадные железные горы, которые находятся на севере, – сказал один из них. – Мореплаватели рассказывают, что они притягивают неосторожно приблизившиеся корабли, вырывают из них гвозди, и суда разваливаются, обрекая на гибель команду…



    Морская карта с линиями магнитных склонений, составленная Гильбертом


    Гильберт терпелив. Он улыбнулся и напомнил об арабских сказках «Тысяча и одна ночь», где имеется подобный рассказ.

    – Посмотрите, как ведет себя стрелка возле тереллы. Ее наклонение уменьшается к экватору, и, напротив, на магнитных полюсах стрелка изо всех сил стремится встать вертикально. Все дело в том, джентльмены, что наша Земля суть огромный магнит.

    Затем Гильберт положил небольшие магнитные стерженьки в легкие кораблики и пустил их плавать в узкое корыто с водой. Всплескивали руками дамы, наблюдая, как навстречу устремляются суденышки со стерженьками, повернутыми друг к другу разноименными полюсами. И как расходятся те, на которых стержни смотрят друг на друга одинаковыми концами. Присутствующие были в восторге. Вот поистине сокрушающий ответ этому выскочке Бэкону. Действительно, победа очевидна. Королева улыбалась. А Гильберт продолжал:

    – Если ваше величество соблаговолит согласиться с выводом, что Земля – магнит, то остается сделать один шаг до допущения, что и другие небесные тела, в особенности Луна и Солнце, наделены также магнитными силами. А коль скоро так, то не в магнетизме ли заключается причина приливов и отливов, не в нем ли и причина движения небесных тел?



    Магнитная стрелка, свободно плавающая в жидкости


    Вряд ли кто-нибудь из присутствовавших мог понять всю глубину высказанного Гильбертом предположения. Один лишь Бэкон готовился вновь возразить. И он непременно сделал бы это, потому что Гильберт поддерживал учение польского астронома Николая Коперника о движении Земли, а Бэкон его отрицал. Но в это время кто-то больно наступил ему на ногу, и молодой стряпчий увидел рядом побелевшие от гнева глаза дяди.

    – Не могли бы вы, сэр, немного переждать со своими заключениями, которые никого не интересуют.

    Лорд-канцлер снял с пальца кольцо с крупным бриллиантом.

    – Прошу вас, сэр Уильям, проверьте, не пропадет ли сила вашего магнита, если положить рядом этот камень? Ведь, кажется, есть мнение, что бриллианты уничтожают притяжение?..

    – Милорд, – ответил врач, – боюсь, что одного камня, даже с вашей руки, недостаточно, чтобы проверить это утверждение. А у меня таких драгоценностей нет…

    Взгляды присутствующих обратились к королеве. Поколебавшись, Елизавета приказала принести несколько крупных камней из сокровищницы. Такая игра ей нравилась. Во-первых, королеве всегда доставляло удовольствие любоваться блеском своих бриллиантов. Во-вторых, она была женщиной. И это – лишняя возможность похвастаться. А в-третьих… В-третьих, было, конечно, забавно посмотреть, не уничтожат ли драгоценные камни силу магнита.

    Гильберт обложил магнит семнадцатью крупными алмазами и поднес к нему другой магнит. Раздался щелчок. Оба стержня слиплись. Присутствующие захлопали в ладоши.

    – Ваше величество может убедиться, что и это мнение древних оказывается ложным. Однако силой притяжения обладает не один магнит. Древние и новые писатели упоминают, что желтый янтарь, будучи натерт, притягивает солому и прочие легкие тельца. Я же обнаружил, что не только это вещество обладает притяжением. Взгляните…

    Гильберт укрепил в держателе из темного дерева один из бриллиантов королевы и стал натирать его полой плаща.

    – Сэр Уильям, мы надеемся, что после этого опыта камень не исчезнет и не испортится? – обеспокоилась одна из присутствующих дам.

    – Случись так, это было бы великим открытием. И ее величество, как истинная покровительница наук, я уверен, ни секунды не пожалела бы о такой потере. Корона Англии не обеднеет от такой жертвы.



    Притягивание магнитом железных предметов


    Придворные изумились ловкости, с которой лейб-медик парировал обращенные к нему слова. А королева подумала, что ее врач не просто так напоминает о том, что научные искания стоят денег. Придется ему пожаловать какую-то сумму. Вдруг что-то и впрямь пригодится на флоте.

    Гильберт тем временем уже поднес к натертому алмазу соломинку, наколотую на зубочистку. И все увидели, как под влиянием неизвестной силы соломинка тянется к камню.

    – Точно так же притягивают легкие тела сапфир и рубин, опал, аметист, берилл и горный хрусталь. Даже простое стекло и непрозрачные сера и смола обладают подобной притягательной силой.



    Японский и китайский компасы


    Долго продолжались опыты. Гильберт забавлял присутствующих тем, что, незаметно водя магнитом под листом пергамента, поворачивал брошенные на его поверхность железные ключи и шпоры. Он заставлял танцевать обрывки бумаги, поднося к ним натертую стеклянную палочку или фигурку, выточенную из прозрачного янтаря.

    – Многие тела после натирания принимают силу электрона – электризуются, – продолжил свои объяснения лейб-медик, – многие, но не все… Сколько бы мы ни терли благородный жемчуг и слоновую кость, прекрасный паросский мрамор и алебастр, они не приобретают электрической силы притяжения. Не электризуются и металлы.

    – Но тогда природа магнитной силы и силы электрической должна быть различна? – Это восклицание непроизвольно вырвалось из уст Бэкона, вызвав снова ропот неудовольствия.

    Гильберт задумался, но лишь для того, чтобы поточнее сформулировать ответ. Все эти вопросы тысячу раз продуманы им в тиши кабинета и за лабораторным столом.

    – Сэр Фрэнсис прав. Об этом я уже писал в своей книге. Слишком много различий между проявлениями магнетизма и электричества, чтобы считать их природу единой.

    Магнитная сила постоянна. Она – свойство, присущее телу, в духе великого Аристотеля. Притяжение же электрической силой создается лишь трением. Кроме того, магнит притягивает только железо. Его сила не боится ни воды, ни огня. Электрическая же сила притягивает многие вещи, но она капризна и зависит от погоды, уничтожаясь при влажности. Некоторые философы считают, что трением изгоняется из тел тончайшая жидкость, служащая для их связи. Она-то и вызывает электрическое притяжение, подобно тому, как воздух заставляет стремиться к центру Земли все тела, когда их лишают опоры!…

    Королева зевнула. Ученая беседа наскучила всем. Один лишь Бэкон, казалось, готов был слушать до бесконечности. Но его глаза так часто загорались блеском еле сдерживаемого возражения, что Гильберт старался не смотреть в его сторону. Он устал от демонстраций. Не доверяя слугам, сам собрал приборы, откланялся и ушел почти незамеченным.

    Поспешим вслед за ним и мы. Тем более придворные вновь увлеклись дворцовыми сплетнями, разговорами о лошадях и о собаках для травли лисиц.



    Галилео Галилей (1564–1642)


    «Из доказательств наилучшее – есть доказательство опытом», – напишет Бэкон несколько лет спустя. И тут же добавит: «Однако нынешние опыты бессмысленны. Экспериментаторы скитаются без пути, мало продвигаясь вперед, а если найдется серьезно отдающийся науке, то и он роется в одном каком-нибудь опыте, как Гильберт в магнетизме».

    Странное высказывание для того, кто во главу угла всей новой науки требовал поставить экспериментальный метод. Впрочем, сегодня нам трудно сказать, насколько принципиальны были те побуждения, которые двигали непоследовательным Бэконом в оценке трудов лейб-медика королевы.

    Совсем иначе звучит отзыв другого современника Гильберта, итальянского ученого Галилео Галилея: «Величайшей похвалы заслуживает Гильберт. за то, что он произвел такое количество новых и точных наблюдений. И тем посрамлены пустые и лживые авторы, которые пишут не только о том, чего сами не знают, но и передают все, что пришло им от невежд и глупцов».

    Жаль, что сам Гильберт не узнал об этой блестящей оценке. В марте 1603 года умерла королева, а несколько месяцев спустя – и ее врач. Перед смертью Гильберт завещал все свое имущество Лондонскому обществу медиков. Однако пожар уничтожил приборы. Осталось лишь сочинение «О магните…» да имя автора на обложке.



    Галилей и ученики


    Много это или мало? Научные труды быстро стареют. На достижения первооткрывателей наслаиваются работы последователей, и те скоро начинают казаться невероятной архаикой. Впрочем, перелистаем желтые страницы шести книг, переплетенных в телячью кожу. Попробуем пробиться через старинную латынь и выпишем свойства магнита, сформулированные Гильбертом:

    «1. Магнит в различных своих частях обладает различной притягательной силой; на полюсах эта сила наибольшая.

    2. Магнит всегда имеет два полюса: северный и южный, кои весьма различны по своим свойствам.

    3. Разноименные полюсы магнитов притягиваются, одноименные отталкиваются.

    4. Земной шар есть большой магнит.

    5. Получить магнит с одним полюсом невозможно.

    6. Магнит, подвешенный на нитке, располагается всегда в пространстве таким образом, что один его конец указывает на север, а другой – на юг».

    С тех пор прошло много лет. Магнетизм веществ широко применяется в науке и технике. Без знания законов магнетизма были бы невозможны ни энергетика, ни радиотехника, ни морская и космическая навигация, ни приборостроение, ни автоматика и телемеханика. Этот список можно продолжать до бесконечности, поскольку явления магнетизма важной составляющей частью вошли в саму основу нашей цивилизации.

    А много ли нового о природе магнита узнали мы со времени Гильберта? Увы! Черный камень из страны магнетов по-прежнему крепко хранит в неприкосновенности свои главные тайны.

    В память же о Гильберте единица разности магнитных потенциалов в Международной системе единиц (СИ) носит сегодня название «гильберт». И прав английский поэт Джон Драйден, написавший, что «Гильберт будет жить, пока магнит не перестанет притягивать».

    Почему Земля – магнит?

    Гильберт был уверен, что Земля состоит из магнитного камня. И ей присущи шесть свойств, сформулированных им. Для последующих веков этого объяснения стало мало. Можно составить длинный список гипотез, предложенных позже для пояснения сути наблюдаемого явления. Ученые разбирали причины земного магнетизма, не зная, по сути дела, ответа на главный вопрос: почему магнит притягивает?

    Высказанные предположения можно разделить на две группы: первая – геомагнетизм имеет космическое происхождение; вторая – геомагнетизм – явление чисто земного характера. Потом, правда, появилась и третья группа гипотез, согласно которым магнетизм вообще есть универсальное свойство материи, находящейся в движении.

    Когда ученые подсчитали, каким должно быть магнитное поле Земли, если оно создается полем Солнца и даже всей Галактики, то получили ничтожную величину. Поле Земли сильнее. Гипотезу космического происхождения геомагнетизма пришлось оставить.

    После космоса естественно было искать причину во внутреннем строении самой Земли. Возникло несколько интересных гипотез, которые основывались на предположении о жидком состоянии земного ядра, состоящего из хорошо проводящего материала, скорее всего, из железа. В массе такого ядра неизбежны течения, разделение и движение зарядов, а следовательно, должны были возникать электрические токи, которые могли намагничивать Землю.

    Одним из авторов подобной гипотезы был известный советский физик Я. И. Френкель, много сделавший в области теории магнитных явлений. Но для признания гипотез второй группы не хватало единого мнения о состоянии земного ядра. Действительно ли оно жидкое? Кое-кто из геофизиков считал его твердым.

    В конце XIX века, изучая форму короны Солнца, астрофизики начали подозревать наличие магнитного поля и у нашего светила. Откуда же оно могло взяться у раскаленного газового шара?

    Профессор Кембриджского университета и член Лондонского королевского общества Артур Шустер высказал вскользь идею: а не является ли магнетизм универсальным свойством всякого вращающегося тела?



    Петр Николаевич Лебедев (1866–1912)


    За разработку этой любопытной гипотезы взялся русский физик-экспериментатор Петр Николаевич Лебедев, работавший в Московском университете. Он придумал весьма остроумный эксперимент: заставить быстро вращаться металлическое кольцо и проверить, не станет ли оно при этом магнитом.

    Кольцо в опыте Лебедева крутилось со скоростью 35 000 об/мин. Рядом стоял магнитометр, превосходящий по чувствительности все существующие приборы. Петр Николаевич предполагал, что под влиянием центробежной силы отрицательные заряды – электроны в атомах несколько сместятся. В результате поверхность тела получит некоторый отрицательный заряд, что и должно вызвать появление магнитного поля… Увы, магнитометр поля не обнаружил. Тем не менее в статье, описывающей эксперимент, русский ученый высказал весьма оптимистические надежды.

    В 1947 году забытая гипотеза возродилась. Профессор Манчестерского университета Патрик Блэкетт, член Лондонского королевского общества, высказал предположение, что появление магнитного поля вокруг вращающегося тела – закон природы.

    Более того, опираясь на известные данные о скорости вращения Земли, Солнца и белого карлика – звезды Е-78 из созвездия Девы – Блэкетт дал формулу, позволяющую рассчитать зависимость магнитного поля от вращения тела. В нее вошли такие константы, как скорость света и гравитационная постоянная, что наводило ученых на мысль: а не путь ли это к единой теории поля, над которой безрезультатно бились много лет теоретики во главе с Эйнштейном?

    Блэкетт сам решил экспериментально проверить правильность своих предположений. «В чистом поле», то есть подальше от возможных источников посторонних магнитных полей, которые в изобилии создают промышленные предприятия, возвели «экспериментальное здание» – сарай, построенный без железных деталей. Чувствительность установленного магнитометра позволяла заметить ничтожную величину изменения магнитного поля – десятимиллиардную долю гаусса. Ночью с большими предосторожностями привезли цилиндр из чистого золота массой 20 кг. Золото – заведомо немагнитный металл. Цилиндр неподвижно установили в том же сарае. Блэкетт считал, что достаточно вращения Земли, чтобы вокруг цилиндра появилось магнитное поле. Если формула, составленная им, справедлива, то магнитометр отметит его появление. Если же не отметит, то его предположения неверны.

    Смысл статьи, опубликованной ученым после эксперимента, сводился к короткому отрицанию – нет! Задуманный эксперимент опроверг гипотезу.



    Патрик Мейнард Стюарт Блэкетт (1897–1974)


    Сначала Блэкетт собирался произвести еще один опыт с вращающимся цилиндром. Но, по его же словам, после первой неудачи охладел к самой идее. На Земле наступал космический век. Он поставил многие «старые» вопросы по-новому. При небольшом удельном весе и небольшой общей массе у Луны жидкого металлического ядра быть не может. Значит, если верна гипотеза Френкеля и других ученых, у нее не должно быть и магнитного поля… Так и оказалось. Автоматы это подтвердили. Но почему тогда межпланетные автоматические станции не сумели найти магнитного поля у Венеры? Ведь эта планета по массе и плотности сходна с Землей. По идее, у нее должно быть и жидкое ядро. Правда, Венера, в отличие от нашей планеты, летит по своей орбите вокруг Солнца, еле поворачиваясь вокруг своей оси.

    Обнаружились новые факты и на Земле. В 50-х годах ХХ века ученые установили, что многие горные породы намагничивались во время их образования. При этом направление их намагниченности, естественно, совпадало с направлением геомагнитного поля. Раз возникнув, намагниченность во многих случаях с тех пор не менялась. Не значит ли это, что, определив ее для горных пород различного возраста, мы узнаем и всю историю магнитного поля нашей планеты?

    Вроде бы никаких видимых противоречий в высказанном предположении нет. Правда, задача это не простая. Однако ученые – народ трудолюбивый. Они отработали методику восстановления магнитного поля Земли для прошедших геологических эпох. Собрали образцы из разных мест земного шара. Исследовали их. Обработали и обобщили результаты и.

    В 1963–1968 годах магнитологи А. Кокс, Р. Доэлл и Г. Далримпл опубликовали результаты серии своих работ. В них они сопоставили намагниченность взятых из различных районов земного шара двухсот сорока образцов, возраст которых был определен. Результаты исследований оказались поразительными. Получалось, что за истекшие последние 4,5 миллиона лет (срок весьма скромный для жизни нашей Земли) планета четырежды (!) меняла полярность своего магнитного поля на противоположную. Недопустимое легкомыслие для солидного космического тела. Может быть, в исследования ученых вкралась ошибка? Ведь изменения геомагнитного поля не могут пройти бесследно для жизни всей планеты. Слишком многое с ним связано.

    Потрясающее открытие было подтверждено и работами специально оборудованного судна «Гломар Челленджер», пробурившего в океанском дне множество скважин и добывшего из них колонки керна. В них тоже были обнаружены слои с нормальной и обратной намагниченностью. При этом обращение полярности происходило не скачками, в результате какого-то катаклизма, а постепенно. В течение нескольких тысячелетий геомагнитное поле убывало, а потом снова нарастало, но уже с противоположным знаком. Такие периоды бывали в истории Земли и в более древние времена. А как сейчас?

    Приближенно мы и сегодня можем рассматривать магнитное поле Земли, как во времена Гильберта, в виде поля «магнитной палочки», небольшого линейного магнита, спрятанного в центре нашей планеты. Магнит этот наклонен примерно на одиннадцать градусов относительно оси вращения. Само же поле как бы состоит из двух частей: большей (от «магнитной палочки») и меньшей (зависящей, возможно, от намагниченности горных пород). Результаты измерений за сто пятьдесят лет показывают, что большая часть геомагнитного поля – дипольная – убывает. И довольно быстро – примерно на 5 % за столетие. Экстраполируя результаты, можно прийти к выводу, что через две тысячи лет магнитное поле Земли снова «опрокинется». Так что мы живем в эпоху обращения полярности.

    А ведь напомним, что именно геомагнитное поле отклоняет в полярные области потоки заряженных частиц, которые выбрасывает из своих недр Солнце. Оно же образует радиационные пояса вокруг планеты. Магнитное поле участвует в работе космической и наземной радиосвязи, радионавигации. Наконец, между состоянием магнитного поля Земли и климатом, как утверждают некоторые ученые, есть весьма существенная зависимость. Что же произойдет, когда оно уменьшится до минимума, а затем станет даже обратного знака? Человечеству далеко не безразличны состояние и эволюция всей магнитосферы Земли. Весьма насущные проблемы требуют от геофизиков детального знания как количественных характеристик магнитного поля Земли, так и тенденций его изменения.

    Все это хорошо! А почему все-таки Земля – магнит? Ведь именно так мы поставили вопрос в заголовке. Вопрос нелегкий. Одним из наиболее правдоподобных ответов на него может быть, пожалуй, гипотеза о динамомеханизме в жидком земном ядре.

    По современным представлениям, Земля – довольно сложная система. Это вращающийся толстостенный шар, стенки которого состоят из вещества мантии, а внутренняя полость заполнена хорошо проводящей электрический ток жидкостью, в самом центре которой плавает твердое ядро.

    При вращении планеты внешний слой ее жидкого пласта может несколько отставать от вращения коры и мантии, порождая внутри проводящей жидкости течения…

    А теперь закройте на минутку глаза и представьте: в слабом магнитном поле, созданном геомагнитными материалами, вращается замкнутый контур из хорошего проводника. Да ведь это не что иное, как генератор – динамо. Отставая от общего вращения, проводящий слой пересекает силовые магнитные линии слабого изначального магнитного поля, и в нем возбуждается электрический ток. Но этот электрический ток обладает собственным магнитным полем, которое складывается с начальным и усиливает его. Большее магнитное поле порождает и более сильный электрический ток. Получается как бы электрогенератор с самовозбуждением.

    Самое интересное, что эта гипотеза позволяет объяснить и периодическую смену полярности геомагнитного поля. Для этого электромагнитные процессы в земном ядре нужно смоделировать и представить в виде работы двух взаимодействующих дисковых динамо, в которых ток одного подпитывает магнитное поле другого и наоборот. Основания для такой аналогии есть: уравнения, описывающие механизм движения в жидком слое земного ядра, схожи с уравнениями для цепочек взаимодействующих динамо.

    Магнитное поле такой системы периодически меняет свою полярность. Так что с математической точки зрения способность геомагнитного поля к «самоопрокидыванию» перестает быть загадочной. Вот только узнать бы точно, как устроено ядро Земли.

    Не упрекайте автора в том, что он слишком отклонился от путешествия в прошлое и перешел к понятиям современности. Мы живем не в XVII веке и вооружены знаниями своего времени. А задача истории заключается не в простом восстановлении картины прошедших эпох, а в понимании пути прогресса, того, как дошли люди от удивления перед чудесами до того, чтобы поставить эти чудеса себе на службу и в конце концов создать себе тот электромагнитный мир, в котором мы живем сегодня.

    Бургомистр Магдебурга

    Следующая остановка в нашем путешествии сквозь время и пространство приходится примерно на середину XVII столетия. Город Магдебург. Не успев приехать, мы сразу понимаем, что время для посещения выбрано не лучшее. На территории Германии, раздробленной на бесчисленные княжества, догорает Тридцатилетняя война – первый, но, к сожалению, не последний общеевропейский конфликт. Разделившись на два лагеря, государства пытаются доказать свои права диктовать волю «всему христианскому миру». В едином блоке с испано-австрийскими Габсбургами, поддерживая императора (сначала Матвея, а потом подряд двух Фердинандов), выступало папство, польско-литовское государство и католические князья Германии.

    В антигабсбургскую коалицию в разное время, кроме немецких протестантских князей, заинтересованных в сохранении своих земель и независимости, вступили Чехия и Дания, Голландия, Швеция, Россия, Англия и, наконец, Франция. Но основные бои разворачивались в центре Европы, где владетельные немецкие князья не могли договориться между собой. В результате в последний период войны, охватывающий 1635–1648 годы, и союзники и противники одинаково вытаптывали нивы, разоряли города. Мародеры шведско-французских войск ничем не отличались от мародеров имперско-испанских. Население разграбленных княжеств вело непрерывную и ожесточенную партизанскую войну с теми и другими.

    Но военный перевес явно склонялся в сторону Франции и Швеции. Возникла даже перспектива раздела Германии между этими странами, когда в 1648 году был заключен Вестфальский мир.

    Магдебург особенно пострадал в войне. После долгой осады ландскнехты Габсбургов захватили штурмом и разграбили город. Они перебили множество горожан, а потом все сожгли дотла. Но подошли войска шведского короля, и наемники отступили. Вместе со шведами возвратились на родное пепелище успевшие уехать именитые горожане, среди которых был и молодой сын местного пивовара Отто Герике.

    Он много лет изучал правоведение, математику и механику в Голландии и в германских университетах, а потом служил инженером в шведских войсках. Но пришло время продолжить семейную традицию. Глазам вернувшихся открылась страшная картина полного разрушения. Но люди редко предаются отчаянию подолгу. Оставшимся в живых предстояло немало работы: нужно было прокладывать улицы среди руин, возводить новые мосты. Тут-то и пригодился инженер Отто Герике. И он с жаром принялся за работу…

    Профессия инженера довольно древняя. Сначала так называли тех, кто управлял военными машинами, потом добавили к ним саперов, подрывников. В XVI веке в Голландии появились первые гражданские инженеры – специалисты по строительству дорог и мостов.

    Постепенно, как сказочная птица Феникс, новый Магдебург восстал из пепла на берегу Эльбы. Но положение города оставалось непрочным. Войска то одной, то другой воюющей стороны располагались в нем на постой. А после заключения мира саксонский курфюрст вообще прислал в него постоянный гарнизон. Нелегко было горожанам содержать прожорливых солдат. И тогда у «отцов города» возникла мысль: а не послать ли молодого пивовара-инженера ко двору? Пусть попробует уговорить курфюрста отозвать гарнизон и разрешить заменить его городской милицией. Не зря же Герике, кроме механики, учился еще и правоведению.



    Отто Герике (1602–1686)


    Сложная миссия увенчалась успехом. Солдат вывели, жители из своих рядов избрали городскую милицию, а удачливого дипломата сделали своим бургомистром.

    Единственное, что смущало горожан в Герике, так это то, что одновременно с пивоварением и многочисленными обязанностями по городу молодой бургомистр увлекался физическими экспериментами. Он вытягивал воздух насосом из бочки и стеклянной бутыли, и последняя лопалась со страшным звоном. Он велел отковать два медных полушария, снабдил их краном, сложил и тоже откачал воздух. Полушария так слиплись, что и шесть впряженных лошадей не могли оторвать половинки друг от друга. Но стоило открыть кран и впустить туда воздух, как они сами собой свободно распались.

    Чудеса! Конечно, лучше бы он только варил пиво. Это для бургомистра куда как солиднее. Но поскольку научные занятия инженера не мешали городским делам и доходам, горожане смотрели на его чудачества снисходительно. А когда, показав кое-что из своих «кунштюков» при дворе курфюрста, Герике добился новых льгот для Магдебурга, люди даже стали им гордиться. Молва разнесла не только быль, но и небылицы об ученом бургомистре по всей Германии. Знатные особы специально приезжали в Магдебург, чтобы поглядеть на знаменитый барометр, установленный Герике возле своего дома. Знакомясь с физическими приборами, изобретенными пивоваром, гости не обходили вниманием и пиво, сваренное в доме бургомистра. И убеждались, что в этом деле чудак-инженер тоже остался мастером.



    Воздушный насос фон Герике


    Должность бургомистра и частые поездки ко двору отвлекали Герике от экспериментов. Но как истинный немец, он тщательно записывал результаты опытов, надеясь, что когда-нибудь аккуратность сослужит ему добрую службу.

    Был ли Отто Герике ученым? Вряд ли. Скорее – изобретателем. Это не менее достойная категория людей, обладающих любознательностью в сочетании с желанием усовершенствовать уже имеющееся и смастерить то, чего пока нет.



    Опыт фон Герике с магдебургскими полушариями


    Некоторые биографы высказывали предположение, что для Герике внешний эффект был важнее проникновения в суть наблюдаемого явления. И потому тихие, неэффектные опыты с магнитами и электрической силой, добываемой трением, его не увлекали. Вряд ли это справедливо. Познакомившись с трактатом Гильберта, он задумал повторить описанные опыты, но при этом поставить их с размахом. Сделать так, чтобы слабые проявления электрической силы были заметны. Для этого прежде всего нужно научиться добывать большее количество электричества, чем это делал Гильберт, натирая зерна янтаря и серные шарики, насаженные на палочки.

    И Герике задумал хитрую штуку! Со своей идеей он поспешил к мастеру-стеклодуву. Пусть мастер выдует большой стеклянный пузырь величиной не меньше чем с детскую голову. В этот пузырь он нальет расплавленную серу. И когда та охладится и застынет, разобьет стекло. Тогда у него в руках останется большой шар из серы, на котором от трения соберется конечно же больше электричества, чем добывал его врач английской королевы.

    Для середины XVII века это была довольно сложная технологическая задача – изготовление большого шара из серы. Сложная и дорогая. Но немецкие мастера славились своим умением. Прошло немного времени, и шар отлили, освободили от стеклянной оболочки, отшлифовали и даже насадили на железную ось с рукояткой, чтобы удобнее было укрепить его на станине. Получилась первая в истории науки и техники машина для получения электричества трением. Ах, если бы изобретатель знал, что нет никакой надобности в сере, что стеклянный шар, натертый сухой ладонью, электризуется так же, как и сделанный из серы! Тогда опыт обошелся бы ему значительно дешевле. Но Герике этого не знал. Он лишь повторял опыты, уже описанные в книгах, и старался подметить то, чего авторы не заметили.

    Наэлектризовав шар ладонью, Герике с восторгом наблюдал, как танцуют над ним пушинки, не рискуя опуститься. А те, что все-таки опускаются, отскакивают от серы прочь. Экспериментатор снимал шар со станины и преследовал пушинку, отталкивая ее и заставляя лететь в желаемом направлении. Получалось, что он управляет ее полетом… «Э! – сказал себе Герике. – Похоже, что наэлектризованное тело не только притягивает, но и отталкивает легкие тельца. Почему?»

    У Гильберта о причинах отталкивания – ни слова. Ученый иезуит Афанасий Кирхер наполнил свой труд о магните баснями, вроде того, что магнит не любит чеснока и увеличивает свою силу, ежели его обернуть красной тряпкой или окунуть в горячую кровь козла. В 1639 году вышла еще одна книга – итальянского монаха-естествоиспытателя Никколо Кабео. В ней приведено немало рассуждений о причине притяжения как магнита, так и наэлектризованных тел: «Из натираемого тела начинается истечение невидимой жидкости, коя расталкивает прилегающий к телу воздух и производит в нем завихрения. Вихри эти увлекают притягиваемые легкие тельца». Ну что же, путаное, конечно, но все-таки объяснение. А вот как быть с отталкиванием?

    Герике заметил, что стоит дотронуться до оттолкнувшейся от шара пушинки, как она устремляется к натертому шару и, едва коснувшись его поверхности, снова уносится прочь. В один из теплых солнечных дней такая пушинка стала преследовать нос самого экспериментатора, и, как он ни отворачивался, она коснулась его и тут же полетела снова к шару. Чудеса!

    Пожалуй, до него никто не проделал столько опытов с электрическим отталкиванием. Во всяком случае, ни в одной из книг об этом не было написано. Может быть, это его открытие?!

    Кроме того, он обнаружил, что электрическая сила распространяется по льняной нитке на расстояние целого локтя от серного шара. А сам шар, будучи хорошо натерт, светится в темноте слабым синеватым светом и, испуская крохотные искры, тихо потрескивает.



    Опыт Герике с серным шаром


    Бургомистр подвесил к потолку легкий шарик из бузины, привязанный к длинной нитке, и поднес к нему натертый серный шар. Куда бы он ни повернулся, маленький шарик всюду следовал за большим, оборотясь к нему строго одной своей стороной. «Уж не так ли и Луна управляется силами, истекающими из Земли? – подумал бургомистр. – Может быть, электрические и магнитные силы помогут объяснить строение космоса?»

    Эта идея была высказана еще Гильбертом. Не отрицал и Галилей связи между суточным вращением Земли с ее столь наглядными магнитными силами. Задачу выяснить гармонию мира и построить «архитектуру Вселенной» ставил перед собой и астроном Иоганн Кеплер.

    Устройство мира волновало и интересовало естествоиспытателей, астрономов и философов. Какие силы объединяют небесные тела, в чем причина непревзойденной мировой гармонии?

    Конечно, если бы Герике мог сесть за стол, обдумать и описать результаты своих опытов в книге, в которой не будет ни грамма выдумки, а только то, что он видел и испытал сам… Но где там! Служба не оставляла ни минутки свободного времени.

    Как-то на рейхстаге в Регенсбурге он демонстрировал свои опыты и машины перед самим императором и собравшимися курфюрстами. Удостоился похвалы. А потом Каспар Шотт описал его приборы и опыты в своей книге. Спасибо, что хоть упомянул имя Герике, а не присвоил себе славу экспериментатора, как это порой делали другие.

    Между тем его собственное сочинение подвигалось вперед трудно. Никогда он не думал, что писание требует столько времени и усилий. Наконец в 1663 году Герике отдал рукопись амстердамскому издателю. Теперь оставалось только ждать. Незаметно бежало время. Он был уже не безвестным экспериментатором и не простым пивоваром. За научные заслуги император возвел его в дворянское достоинство, после чего он смог добавлять к своей фамилии приставку «фон». Вот только годы не ждали…

    Ему исполнилось уже семьдесят, а его книга с прекрасным правдивым описанием опытов и великолепными рисунками, которые так дорого ему стоили, все еще не могла увидеть света.

    Лишь в 1672 году вышла книга из-под пресса типографии. Герике был счастлив. Его не расстроило даже то, что в качестве гонорара пришлось довольствоваться только семьюдесятью пятью экземплярами первого тиснения да обещанием книгоиздателя прислать еще двенадцать со второго издания, коли оно будет. Бургомистр все чаще задумывался о том, сколько лет у него украли неблагодарные городские дела и политика! Он чувствовал усталость, но город и слушать не хотел о его отставке. Наконец, после неоднократных заявлений, просьбу его удовлетворили. Можно было заняться экспериментами. Любопытные горожане стали чаще видеть громоздкую фигуру своего «десятипудового бургомистра» (именно такое прозвище дали ему насмешники) в окнах домашнего кабинета. Но продолжалось это недолго.

    Через два года после его отставки в Магдебурге началась чума. Новые власти делали, по его мнению, все не так, а его не слушали. Старик!.. Обидевшись, Герике покинул родной город и уехал к единственному сыну в Гамбург. И там вскоре умер в возрасте восьмидесяти четырех лет.

    Книга Отто фон Герике разлетелась по многим европейским странам и побудила естествоиспытателей повторять и проверять описанные опыты. И это было прекрасно, потому что, проверяя, ученые невольно изменяли условия эксперимента и получали новые результаты, накапливали новые факты.

    В Италии опыты с электрическим притяжением и отталкиванием вели члены Академии дель Чименто. В Англии Роберт Бойль, опытный экспериментатор, нашел, что все тела обнаруживают большую электрическую силу, если их перед натиранием чисто вытереть и согреть. Не оттого ли теплым солнечным днем даже нос почтенного магдебургского бургомистра принял такое живое участие в игре с пушинкой?



    Титульный лист трактата фон Герике «Новые опыты в пустом пространстве»


    Славу Бойля составили его пневматические эксперименты. И он решил проверить, как ведут себя наэлектризованные тела в пустоте. Оказалось, что электрическая сила не зависит от наличия воздуха. Но что же она тогда собой представляет?

    Во Франции некто Пикар, изготавливая трубку для барометра, заполнил ее ртутью и перевернул, чтобы в запаянном конце осталась торричеллиева пустота. Вечером, случайно встряхнув прибор, он обнаружил слабое свечение ртути. «Живое серебро» начало светиться при встряхивании трубки. Почему?

    Опыт этот породил много споров. Одни считали, что в ртути присутствует особый «меркуриальный фосфор». Другие осторожно говорили, что причиной свечения может быть электризация стеклянных стенок трубки при встряхивании ртути. К единому мнению так и не пришли. Нужны были новые опыты, новые исследования.

    Как возникла Солнечная система?

    Вы никогда не задумывались над этим вопросом? Кое-кому может показаться, что вроде бы неуместно в книжке, посвященной электричеству, говорить о космогонии. Но это только на первый взгляд. Главное проявление электрических и магнитных сил – в притяжении и отталкивании. А разве это не те воздействия, которые нужны для того, чтобы собрать вместе пыль и обломки вещества, летающие в космосе, закрутить их в огромную карусель, разделить на части и сформировать из главного кома звезду, а из комков поменьше – планеты? Нет, нет, не отмахивайтесь от такой идеи.

    В современной космогонии отсчет времени жизни космогонической гипотезы с участием электромагнитных сил ведется обычно от 1912–1914 года. Примерно тогда известный норвежский физик Биркеланд попытался серьезно ввести в механизм образования Солнечной системы эти силы. Поскольку первоначальная туманность должна была во что бы то ни стало состоять из смеси заряженных частиц, Солнце вполне могло сыграть роль «сепаратора» и распределить бестолково летающий вокруг него рой частиц по слоям, или кольцам. Правда, тогда все планеты по своему составу должны были бы резко отличаться не только друг от друга, но и от оставшихся обломков, залетающих к нам в виде метеоритов. Между тем метеориты, падающие на Землю, почему-то имеют очень сходный с нею состав. Нет, похоже, что-то в гипотезе Биркеланда оказалось недодуманным.

    Астрономы много лет спорили о том, что представляет собой Солнечная система. Дольше всех моделей продержалась схема древнегреческого астронома Птолемея, который ставил в центр мироздания Землю. Датский астроном Тихо Браге не решился сдвинуть Землю с мирового центра, но заставил некоторые планеты обращаться вокруг Солнца. И лишь польский астроном Николай Коперник проложил Земле и другим планетам путь по орбитам вокруг центрального светила.

    После окончания Второй мировой войны шведский астрофизик Ханнес Альфвен развил предположения, высказанные Биркеландом в начале века. Он представил, что туманность, окружавшая светило, состояла из нейтральных частиц, а вот Солнце обладало сильным магнитным полем. Под действием излучения Солнца и собственных столкновений атомы ионизировались. При этом ионы попадали в ловушки из магнитных силовых линий и увлекались вслед за вращающимся светилом. Постепенно Солнце теряло свой вращательный момент, передавая его газовому облаку. Но и в этом случае атомы более легких элементов должны были ионизироваться вблизи Солнца, а атомы тяжелых элементов – дальше. Следовательно, и ближайшие к Солнцу планеты должны состоять из наилегчайших элементов, то есть из водорода и гелия, а более отдаленные – содержать в себе железо и никель… Увы, астрономические наблюдения и космические исследования утверждают как раз обратное!



    Аллегорический рисунок XVII века.

    Муза астрономии Урания взвешивает мировые системы


    Конечно, электромагнитные силы должны были играть роль в формировании планетной системы, но какова эта роль? Английский астроном Фред Хойл предложил новый вариант гипотезы. Сначала, как и полагалось, в недрах огромной туманности, обладавшей изначально магнитным полем, зародилась звезда – Солнце. Она быстро вращалась, и туманность становилась все более плоской, похожей на диск. Этот диск постепенно разгонялся, «забирая» движение у центрального светила и передавая его образовывающимся планетам. Солнце постепенно «притормаживалось».

    Хойл считал, что момент количества движения от Солнца передавался не всем частицам туманности одинаково, а в основном газообразным, которые легче превращаются в ионы. Ученый так и писал: «Приобретая момент количества движения, планетное вещество удалялось от солнечного сгущения. Нелетучие вещества конденсировались и отставали от движущегося наружу газа. Именно с этим процессом связан тот факт, что планеты земной группы: 1) имеют малые массы; 2) почти полностью состоят из нелетучих веществ; 3) находятся во внутренней части системы».

    Подобный механизм, по мнению Хойла, создавал условия для существования возле Солнца некой каменно-железной зоны, которая в широком промежутке между орбитами Марса и Юпитера переходила в область, где, напротив, преобладали вода и аммиак, а дальше. Дальше планеты должны были бы состоять из веществ еще более легких, чем составные части Юпитера и Сатурна. И вот тут-то получался «прокол», ибо плотность вещества Урана и Нептуна снова растет!

    Нет, что и говорить, желание привлечь к образованию Солнечной системы электрические и магнитные силы вполне похвально, но доводы пока не очень убедительны. Пока следует признать, что даже частичное привлечение электрических и магнитных сил в качестве созидающих при образовании солнечного семейства надежд не оправдало. Ученым еще предстоит работать и работать.

    Глава 3. От явления к эксперименту

    Фрэнсис Гауксби, «F. R. S.», демонстрирует «эффлувиум»

    На площади Пикадилли в Лондоне, перед Барлингтон-Хаузом, в наши дни всегда полно машин. Однако современные автомобили не портят вида этого старого здания с тремя разномастными этажами и балюстрадой на крыше. Более того, скопление транспортных средств даже как-то подчеркивает значимость строения. Не ищите на нем вывеску или табличку. Любой лондонец и так вам скажет, что здесь находится Королевское общество. Это его современное помещение.

    Лондонское королевское общество для развития естественных наук было основано в 1660 году. Это одно из старейших научных учреждений мира, насчитывающее в своих списках немало славных имен. Избираются в общество, как правило, подданные Великобритании или Ирландии и не больше двадцати пяти человек в год. Кроме них могут быть добавлены три или четыре иностранных члена.

    В начале XVIII века здание, в котором собирались «F. R. S.» (Fellows of Royal Society – члены Королевского общества), было другим. Заседания происходили в старом, уже тогда порядочно обветшавшем Грешем-колледже, завещанном науке богатым лондонским коммерсантом Томасом Грешемом еще при королеве Елизавете. Туда мы и пойдем…



    Исаак Ньютон (1643–1727)


    Потертые каменные ступени вводят нас в дом довольно мрачного вида. Угрюмым выглядит и зал заседаний – большая комната с высокими стрельчатыми окнами. Посередине – длинный стол, накрытый грубым сукном. Вокруг стола – стулья, у стен – простые деревянные скамьи, на которых размещались джентльмены в шляпах и плащах. Это и были «F. R. S.». В плащи они кутались, потому что в зале всегда было холодно, а шляпы в ту пору джентльмены снимали лишь в церкви и перед королем.

    Стулья пока пусты. Они предназначены для важных титулованных гостей и для докладчика. За столом, спиной к пылающему камину, сидит председатель собрания – президент общества, рядом с ним – непременный секретарь.

    Председательствующего нельзя не узнать, это сэр Исаак Ньютон! С 1703 года, после смерти коллеги, помощника и непримиримого врага одновременно, куратора-попечителя и организатора опытов Роберта Гука, Ньютон согласился возглавить общество. Несмотря на полное отсутствие способностей к руководству, его почти четверть века ежегодно переизбирали на этот почетный пост. Великому ученому вовсе не обязательно быть и великим организатором. Сэр Исаак Ньютон торжественно председательствовал на собраниях, восседая на мешке, набитом по традиции овечьей шерстью.

    Надо признать, что со смертью Гука оборвалась и блестящая пора выдающихся совместных опытов в Лондонском королевском обществе. Кабинет с великолепной коллекцией приборов, инструментов пришел в упадок. Джон Бернал в книге «Наука в истории обще ства» описывает впечатления посетителя, побывавшего в Грешем-колледже в 1710 году. Коллекция инструментов «не только не была сколько-нибудь аккуратно прибрана, но, наоборот, покрыта пылью, грязью и копотью, и многие инструменты были сломаны и окончательно испорчены. Стоит только попросить тот или иной инструмент, как оператор, обслуживающий посетителей, обычно отвечает: «Его украл какой-то негодяй» – или, показывая его обломки, заявляет: «Он испорчен или сломан»; и так они заботятся об имуществе». Единственным прогрессом явился переезд общества в 1710 году по настоянию Ньютона в новый дом на Флит-стрит. Но это был успех, так сказать, в административно-хозяйственном плане.

    Начало XVIII столетия вообще характеризуется как период затишья в английской науке. Предприимчивые купцы-дворяне, открывавшие в XVII столетии новые земли, уступили свое место более богатым, но менее любознательным спекулянтам новыми землями. А для спекуляций знания законов природы были необязательны. В упадке же экспериментального искусства среди членов Королевского общества сказалась и многолетняя личная неприязнь Ньютона к коллеге Роберту Гуку. Но тем интереснее отметить те немногочисленные эксперименты, которые все же ставились на его заседаниях.



    Светящийся шар на электрической машине Гауксби


    Вот отворяется дверь, ведущая во внутренние помещения Грешем-колледжа, и два оператора вносят какой-то станок, похожий на ножное точило. Такая же станина, большое колесо с ручкой, а наверху вместо точильного камня прилажен стеклянный шар, из которого выкачан воздух. Следом за установкой появляется и ее изобретатель Фрэнсис Гауксби – демонстратор, подготавливающий опыты для очередных заседаний. После смерти Гука он занял его место, вступив в должность одновременно с новым президентом.

    Операторы задергивают шторы на окнах. В сумрачном помещении становится совсем темно. Затем один из операторов начинает вращать ручку машины, а Гауксби прижимает ладони к шару.

    И о чудо! Натертый шар начинает светиться. Точь-в-точь как светились барометрические трубки с ртутью у француза Пикара при встряхивании.

    Разве это не ответ на вопрос о природе свечения? Разве это не решающее доказательство того, что свет есть результат электризации, а не какого-то там «меркуриального фосфора» в духе алхимиков прошлых веков? Но опыт на этом не кончается. Остановив вращение, экспериментатор подносит к погасшему и темному шару руку. И тотчас же большая, едва ли не в дюйм (около двух с половиной сантиметров) величиной, голубая искра с треском выскакивает из наэлектризованного прибора и ощутимо клюет поднесенный палец.

    Значит, электричество рождает не только силу притяжения, но и искры!… Интересно бы узнать, холодные они или горячие? Ученые джентльмены по очереди подносят пальцы к вновь и вновь электризуемому шару и вскрикивают, ощутив укол. Все это чудесно и непонятно. Правда, кто-то вспоминает, что несколько лет тому назад некий доктор Уолл, натерев янтарь, также извлек из него искру, предположив, что ее свет и треск представляют собой в некотором роде молнию и гром. Но природа атмосферных явлений была в то время совершенно неизвестна людям. Многие продолжали считать молнию вспышкой воспламеняющихся серных паров, накапливающихся в атмосфере. И блестящая догадка Уолла осталась незамеченной. Сам Гауксби, подобно своим предшественникам, полагал, что заряженные тела являются источниками некоего «эффлувиума» – истечения, переходящего с наэлектризованных тел на ненаэлектризованные. Оттого-то, дескать, последние и светятся вблизи наэлектризованных тел. Иногда вместо своей машины со стеклянным шаром Гауксби применял для электризации длинные стеклянные трубки.

    Ньютон не оставался равнодушным к демонстрациям электрических явлений. Как и другие «F. R. S.», он с любопытством смотрел на манипуляции хранителя приборов, снисходительно восхищался результатами, но не больше. Главные работы Великого Физика остались позади. Теперь его больше интересовали вопросы истории, хронологии и религии. Да и сами опыты Гауксби не производили такого громкого впечатления, как некогда, скажем, эксперименты Бойля и Гука или немца Герике. И внимание к чуть заметным проявлениям электричества со стороны ученого мира XVIII столетия было явно недостаточным. А после смерти Гауксби работы в области электричества в Лондонском обществе и вовсе прекратились.

    Хорошие и плохие проводники сэра Стефана Грея

    Мы знакомимся с сэром Стефаном Греем в 1729 году. Почтенному джентльмену за шестьдесят. Он учен, любознателен, довольно богат, член Лондонского королевского общества – «F. R. S». Впрочем, нет. Заветный титул он получит лишь через три года, незадолго до своей смерти. В истории сведений о нем сохранилось немного. Говорили, что в молодости был он будто бы оптиком. Но шлифование линз в XVII веке было общим увлечением людей, желавших прослыть «не чуждыми просвещения».

    В описываемое время Грей пытался выяснить, изменяется ли характер электризации стеклянной трубки от того, закрыта она пробкой или нет. Он заткнул с обоих концов длинную стеклянную трубку пробками и принялся натирать стекло. Провел натертой трубкой над обрывками бумаги. Вроде бы характер электризации остался прежним. Но вот что удивительно: контрольные клочки бумажек притягивались не только стеклом, но и пробками. Значит, электричество перешло на пробки. Ну, а если воткнуть в пробку сосновую щепочку?.. Прекрасно, и по ней распространяется таинственная материя. А если заменить щепочку проволокой с шариком из слоновой кости на конце? И в этом случае шарик отменно шевелил легкие обрывки бумаги. Значит, электричество добралось до него, и он наэлектризовался. «Интересно, – подумал экспериментатор, – на какое же расстояние способна распространяться электрическая сила?»

    Внизу постучали. Это был священник Уилер, член Лондонского королевского общества и его старый друг. «Как нельзя кстати», – подумал Грей.

    Он объяснил суть задуманного эксперимента, и джентльмены принялись за опыты вдвоем. Они меняли толщину бечевки, идущей от заряженной стеклянной трубки к костяному шарику, и наращивали ее. Придавали бечевке вертикальное положение, спуская ее с балкона, и горизонтальное, подвешивая на тонких шелковых нитях. Электрическая сила послушно распространялась и заряжала шарик. Но когда одна из шелковых нитей оборвалась и ее заменили медной проволокой, зацепленной за водосточный желоб, опыт не удался. Шарик оказался не наэлектризован.

    – Не кажется ли вам, Уилер, – задумчиво проговорил Грей, – что в деле проведения электричества суть не в толщине нити, а в ее материале?

    Это был интересный вывод, и оба друга вполне его оценили. По-видимому, разные вещества по-разному проводят электричество. Одни лучше, другие хуже.

    Все последующие дни были заполнены опытами. Они обнаружили, что не только шелк, но и волосы, смола, стекло и некоторые другие материалы позволяют использовать их для сохранения электричества. Грей сажал собаку на смоляную подставку и заряжал электричеством от натертой стеклянной трубки. И пока животное не сходило с подставки, оно сохраняло в своем теле сообщенное ему электричество.

    Он позвал мальчика-грума и за шиллинг уговорил его лечь на приготовленные волосяные петли, подвешенные к потолку. Потом сообщил ему электрическую силу, и мальчик пальцем стал притягивать с пола пушинки и обрывки бумаги.



    Опыт Грея – электризация человека, подвешенного на волосяных петлях


    А однажды Грей убедился, что электризация тел возможна и без прямого касания, стоит поднести к телу заряженную стеклянную трубку. Об этом писали некоторые естествоиспытатели, но им мало кто верил.

    После множества проделанных экспериментов ученый задумался: где в теле хранится запасенное электричество? Он заказал два одинаковых по размерам куба из сухого соснового дерева. Один сплошной, другой полый. Подвесил их на шелковых нитях и прикрепил к каждому по листочку тонкой фольги. Затем наэлектризовал стеклянную трубку и поставил ее точно посередине между кубами.

    Листочки отклонились одинаково. Значит, оба куба восприняли одинаковое количество электричества. Но поскольку один из них, сколоченный из досок, был полым, то следовало сделать вывод, что распределяется электричество только по поверхности кубов. Это был прекрасный опыт, и он дал блистательный результат!

    Гильберт, а за ним и Герике делили все тела на электрические, то есть те, которые при натирании приобретают способность притягивать, и неэлектрические (в основном это были металлы) – не приобретающие при натирании способности притягивать легкий сор. А Грей обнаружил, что трением можно электризовать любые тела. Только в одних, например в смоле, янтаре, стекле, электрическая сила сохраняется долго, а из других (например, из металлов) она тут же уходит, стоит к этим телам прикоснуться. Однако если металлический предмет обособить, лишить связи с землей, иначе говоря, если его изолировать, то и в нем можно возбудить трением электрическую силу.



    Опыт с электрическим маятником из легких бузиновых шариков


    В двух палочках, стеклянной и металлической, Грею удалось почти тридцать дней сохранять электрическую силу, подвесив их к потолку на шелковинках. Но коли так, то классификация, предложенная Гильбертом, неверна. Тела следовало бы делить просто на хорошие и плохие проводники, а не на электрические и неэлектрические.

    Попросив у Уилера железный ключ, Грей намагнитил его и показал, что, наэлектризованный, он притягивает к себе легкие предметы ничуть не меньше и не больше, как если бы и не был вовсе намагничен. Это говорило о том, что магнитные явления не мешают электрическим, равно как и наоборот…

    Впрочем, выводы пусть делают другие. Потому что сразу же возникал вопрос, от которого стремились уйти все естествоиспытатели: что же является таинственным носителем электрических сил?

    Результаты своих опытов Грей аккуратно публиковал в журнале, издаваемом обществом. Он никогда не спешил с выводами. После смерти Ньютона англичане, ошеломленные тем, что среди них жил такой гений, следовали заветам сэра Исаака Ньютона иной раз излишне буквально. Может быть, именно поэтому Стефан Грей, скромно описывая в своих сообщениях результаты опытов, даже не пытался их объяснять, хотя многие из них противоречили утверждениям великих авторитетов.

    Однако может ли ученый, исследователь наблюдать и изучать, скажем, некое явление, не задумываясь над его сутью? Вряд ли. Каждый исследователь обязательно создает для себя рабочую модель – упрощенное представление изучаемого процесса. По-видимому, и у Грея было неотчетливое представление об электричестве как о чем-то, «что пронизывает все наэлектризованное тело и заполняет поры этого тела».

    Такой взгляд не был новостью для английской науки. Еще в самом начале XVIII столетия Фрэнсис Гауксби, первым применивший для электризации тел длинные стеклянные трубки, показывал на заседаниях Лондонского королевского общества свечение стекла, как и янтаря, при натирании его шерстяной материей. Он же демонстрировал истечение какой-то светящейся эманации с острия сильно наэлектризованного тела.

    Ньютон, не раз видевший эти эксперименты, уходил с заседаний в глубокой задумчивости. Сэр Исаак был признанным лидером сторонников «действия сил на расстоянии» в пустом мировом пространстве, но под влиянием опытов Гауксби он в своих размышлениях снова и снова возвращался к гипотезе эфира, заполняющего Вселенную.

    Впрочем, и Гауксби, и Грей отлично понимали, что, прежде чем говорить о сущности электричества, следует накопить о нем как можно больше сведений.

    К сожалению, сэр Стефан не успел проделать все задуманные опыты. В 1736 году семидесятилетний ученый скончался.

    «Грей был прекрасным, необыкновенно остроумным экспериментатором, – говорил опечаленный смертью друга Уилер на заседании общества. – И нам остается только пожалеть, что идея начать исследования в этой области пришла к нему так поздно».

    О «стеклянном» и «смоляном» электричестве

    Расстояние от Лондона до Парижа невелико, и известия Королевского общества быстро достигали берегов Сены. Несмотря на ревнивое неприятие французами всего английского, труды Ньютона и других британских ученых внимательно читались в Париже. Пожалуй, можно сказать, что одним из первых естествоиспытателей на континенте эти идеи воспринял Шарль Франсуа де Систерне Дюфе – французский физик, с двадцати пяти лет – член Парижской академии наук. Он занимался оптикой и механикой, теплотой и магнетизмом. А когда в лондонском журнале прочитал сообщение об опытах Грея, то навсегда «заболел» электричеством.



    Шарль Франсуа Дюфе (1698–1739)


    В юности родные определили Шарля Франсуа на военную службу, к которой он не имел ни малейшей склонности. Дослужившись до скромного чина младшего армейского офицера, Дюфе подал в отставку по причине слабого здоровья и с удовольствием стал заниматься наукой. Сначала его привлекала химия. Но когда подвернулась возможность поступить в Парижский ботанический сад, Дюфе постарался ее не упустить. Служба есть служба.

    В 1732 году его назначили директором ботанического сада. Но Дюфе уже всерьез занимался электричеством. Результаты английского исследователя Грея поразили его. Он повторил ряд описанных экспериментов и сумел передать электричество по бечевке более чем на 300 м! Успехи всегда окрыляют человека.

    Дюфе дюжинами придумывал опыты, один или с помощниками ставил их в своем кабинете. Пробовал электризовать разные вещества. И каждый раз аккуратно записывал результаты в рабочую тетрадь. Скоро у него скопилось таких записей столько, что он смог сделать первый вывод: «Тела, наименее склонные сами становиться электрическими, легче всего притягиваются и переносят наиболее далеко и в наибольшей степени электрическую материю, между тем как тела, наиболее склонные сами становиться электрическими, наименее приспособлены воспринимать электричество от других и передавать его на значительное расстояние». Простим ученому несколько тяжеловатый слог. Ведь он был первым, кто решился на обобщение, да и жил он все же три века назад. Тогда люди и думали и говорили не так кратко, как мы.

    Вывод Дюфе, конечно, еще не закон. Но его появление означает, что в изучении электричества наступила пора переходить от разрозненных фактов к законам, которые приводят эти факты в систему.

    Настал день, когда Дюфе сделал главное свое открытие. Он уже давно замечал, что обрывки бумаги и соломинки, наэлектризованные натертой стеклянной палочкой, отталкиваются ею, но притягиваются натертым янтарным шариком. То же самое происходило и в том случае, если наэлектризовать бумажки, скажем, копаловой смолой или испанским воском. Обрывки отталкивались от предметов, сообщивших им электричество, но притягивались натертой стеклянной палочкой. Получалось, будто в природе существует не одно электричество, а два: «стеклянное» и «смоляное». И все тела делились на две группы: одни воспринимали «стеклянное» электричество, другие – «смоляное». Третьего сорта таинственной силы найти не удавалось…

    В ту пору жил в Париже аббат Жан Антуан Нолле. Он был поистине вездесущ. Знакомый со всеми более или менее известными французскими естествоиспытателями, аббат состоял в переписке со многими зарубежными учеными и время от времени бывал при дворе. Везде он был желанным гостем, делился новостями, перемешивая научные сенсации с великосветскими сплетнями; порой сам показывал эффектные опыты. Ученым аббат Нолле не был. Но роль популяризатора науки снискала ему известность не только в свое время. Особенно важна была его переписка с учеными разных государств. Надо признать, что среди священнослужителей той поры, особенно среди иезуитов, было немало серьезных ученых.



    Один из первых электроскопов с золотыми листочками, изобретенный Дюфе


    Попробуем ранним весенним утром 1735 года последовать за проворным физиком в сутане, после того как он вышел из собственного дома в Париже. Крепкие ноги аббата привели его к ботаническому саду. Вот он взошел на крыльцо, поднял дверной молоток… Да ведь это дом, в котором живет директор этого славного научного заведения, небезызвестный нам Шарль Франсуа де Систерне Дюфе!

    – Как это кстати, господин аббат, что вы заглянули ко мне! – говорит Дюфе, встречая гостя на пороге. – Я задумал воспроизвести опыты сэра Стефана Грея по электризации человека, и мне нужен помощник. Этот болван Жюльен, мой ассистент, сбежал от страха.

    Нолле огляделся. У стола с бумагами стояла прислоненная к креслу стеклянная трубка – главный прибор для получения электричества. С потолочной балки спускались вниз петли из шелковых шнурков.

    – Мой бог, зачем эти приспособления, дорогой Дюфе? Они настолько напоминают дыбу, что я чувствую себя гостем парижского прево.

    Пока Дюфе залезал в петли и располагался в них так, чтобы ни рукавом, ни краем камзола не коснуться пола, аббат Нолле по его просьбе натирал трубку и рассказывал о последних научных новостях. В ходе беседы он время от времени дотрагивался стеклянной трубкой до подвешенного на петлях естествоиспытателя, сообщая ему электрическую силу. Но как узнать, когда электричества накопится достаточно?



    Жан Антуан Нолле (1700–1770)


    – Ах, Дюфе, придумали бы вы, право, инструмент, с помощью которого можно было бы видеть степень электризации.

    – Уже!

    – Что уже?

    – Уже придумал. Взгляните на эту кисточку из растрепавшихся нитей шелкового шнурка. Чем больше вы сообщаете мне электричества, тем дальше нити расходятся друг от друга. Смотрите, как моя кисть ощетинилась. Это свидетельствует о том, что я полон, полон электричеством.

    – Превосходная мысль. И такая простая. Но позвольте мне проверить то же самое старым способом.

    Аббат поднес фарфоровую тарелку, наполненную обрывками бумаги. Естествоиспытатель протянул к ним палец, и обрывки зашевелились.

    – Ну как, вы довольны? Убеждены? – Дюфе улыбнулся. Аббат согласно склонил голову. – Вот что, передайте мне, пожалуйста, вон ту стеклянную палочку, которая лежит на столе. Мы посмотрим, по всей ли ее длине электричество распространится равномерно.

    Нолле протянул требуемое. Но когда Дюфе хотел взяться за палочку, из его руки вдруг выскочила большая голубая искра, раздался треск, и экспериментаторы почувствовали уколы. Это было настолько неожиданно, что оба вскрикнули, а потом засмеялись.

    В том же году Дюфе опубликовал подробное сообщение об изучении им электрических искр и голубоватого свечения, которым бывали окружены электризуемые тела. «Возможно, – писал он, – что в конце концов удастся найти средство для получения электричества в больших масштабах и, следовательно, усилить мощь электрического огня, который во многих из этих опытов представляется (если можно сопоставлять нечто очень маленькое с чем-то очень большим) как бы одной природы с громом и молнией». Это было первое в истории науки опубликованное высказывание об электрической природе молнии.



    Салонные опыты с электричеством


    Теперь все дело упиралось в «средства для получения электричества в больших масштабах». Это понимал не только Дюфе. К сожалению, он рано умер, всего сорока одного года от роду. Но поисками средств и способов получать большее количество электричества заняты были многие. Интересовался ими и аббат Нолле. Он сразу оценил новые возможности для эффектных демонстрационных опытов, которые могли бы давать электрические искры.

    Начиная с середины XVIII века опыты с электричеством, получаемым от трения, стали любимым развлечением образованных людей. Изумительные и совершенно непонятные свойства электризуемого тела уже не только притягивать к себе пушинки и соломинки, но и светиться, рождать искры, сопровождаемые треском, который отдаленно напоминал грозовой гром, – все это приводило людей в подлинный восторг. Но как, как научиться добывать большее количество электричества?

    В одном из писем из-за границы ученый-корреспондент писал аббату Нолле о том, что профессор физики в Виттенберге Георг Матиас Бозе усовершенствовал электрическую машину своего соотечественника профессора Гаузена, сделав ее весьма производительной. Имя, упомянутое в письме, было знакомо Нолле: Христиан Август Гаузен, профессор в Лейпцигском университете, тоже проводил публичные опыты с электризацией трением. Пользовался он при этом, как и Дюфе, длинной стеклянной трубкой. Во время одного из сеансов кто-то предложил демонстратору заменить трубку стеклянным шаром. Если насадить шар на ось с рукояткой, машина получится не столь громоздкой и натирать стекло будет значительно удобнее. Гаузен послушался совета и действительно скоро стал обладателем невиданного до того электрического «снаряда».

    Он необыкновенно гордился «своей» машиной, даже не подозревая, что она уже некогда была изобретена и Герике, и Гауксби, но потом просто забыта. Так бывало, бывает и ныне. Просто для изобретения еще не пришло время. Но с той поры пролетело немало лет. Теперь изобретением и усовершенствованием уже готовых электрических машин стали заниматься многие любители физики, и каждый спешил поделиться своими достижениями. Построил электрическую машину и аббат Нолле, демонстрируя ее действие в парижских салонах.

    Профессор физики в Виттенберге Георг Бозе заметил, что если отводить электричество от стеклянного шара свинцовой трубкой, то действие его усиливается. Сначала такую трубку – «собиратель электричества», или кондуктор, – держал в руках ассистент, который стоял на изолированной подставке. Потом «съемник электричества» стали подвешивать возле машины на шелковых шнурках. Наконец трубку-кондуктор укрепили на станке самой машины.

    Искры получались крупнее, эффектнее, значит, и электричества такие машины давали больше, чем натираемые стеклянные трубки. Оригинальные опыты с электричеством захватывали все больше людей. Экспериментаторы даже бросали свои первоначальные занятия ради загадочной новинки. Большинство этих увлеченных людей, конечно, так и остались дилетантами на всю жизнь, но некоторые все же добивались каких-то успехов….

    Например, респектабельный профессор греческого и латинского языков в Лейпцигском университете Иоганн Генрих Винклер, совершенствуясь в опытах, укрепил четыре стеклянных шара на одной оси для усиления действия своей электрической машины. Два ассистента натирали их ладонями.

    Потом кто-то предложил заменить шары стеклянными цилиндрами, а руки людей – кожаными подушками, набитыми волосом. Это были дельные предложения.



    Электрическая машина с кожаными подушками, укрепленными на штативе


    Винклеру удавалось получать электрические искры порядочной длины. В один прекрасный день он пригласил на свой сеанс довольно много почтенных людей. У всех на глазах экспериментатор сам улегся на шелковые петли. Ассистенты стали его электризовать. Публика затаила дыхание. Неожиданно из пальца профессора Винклера выскочила такая искра, что она зажгла спирт, заранее налитый в блюдце. Успех был потрясающим! Очень довольный латинист выбрался из петель и вполне заслуженно насладился рукоплесканиями. Забросив греческий и латынь, Иоганн Генрих Винклер принял предложение занять кафедру физики в том же университете. А его фокус с возгоранием спирта был не раз повторен и обошел многие города Европы. Англичанин Генри Майлс зажег по способу Винклера фосфор и горючие пары, а его соотечественник Уильям Уотсон заставил вспыхнуть порох.

    Стремление познакомиться с новыми электрическими явлениями охватило буквально всех людей. Те, кому не удавалось побывать в физических лабораториях, удовлетворяли свое любопытство в ярмарочных балаганах, где за небольшую плату электризовали всех желающих. «Даже в среде ученых трезвость взгляда уступила место некоторого рода опьянению, – писал Ф. Розенбергер в «Истории физики», изданной в XIX веке, – и как сто лет тому назад все объяснялось воздушным давлением, так теперь электричество приводилось в связь со всевозможными проблемами и считалось причиной самых разнообразных явлений».

    Увлечение наукой в XVIII веке вытеснило привычные развлечения даже из дворцов. Придворные кавалеры и дамы вместо пасторалей собирали гербарии, и среди богатых людей гораздо больше ценились экзотические растения в оранжереях и коллекции редких бабочек, чем столовое серебро, даже если оно было создано Бенвенуто Челлини. И если раньше научную истину искали в древних манускриптах, то теперь в Европе возник настоящий экспериментальный бум. В любительских кружках, в домашних лабораториях, придворных салонах и на публичных лекциях демонстрировались эффектные опыты, часто на грани фокусов. И конечно, одно из первых мест занимали опыты с электричеством.

    Электризацией пробовали ускорять прорастание семян и появление цыплят из насиженных яиц. В Голландии электризовали бутоны тюльпанов, чтобы те быстрее распускались. Лондонское королевское общество провело целый ряд специальных экспериментов, чтобы проверить влияние электризации на самые разные объекты. Правда, обнадеживающих результатов получено не было.

    Иначе говоря, явления, причины которых были неясны, отдавались во власть новой силе. Такое внимание благотворно подействовало и на развитие науки. За какие-нибудь тридцать последних лет XVIII столетия люди узнали об электричестве больше, чем за всю прошлую историю. Появились первые теории электричества, и новая область знания «созрела для математики».

    Вот только таинственной электрической субстанции с помощью трения первые машины давали мало! В умах исследователей неизбежно должна была возникнуть мысль: а нельзя ли изыскать способы накопления электрических зарядов? И этот вопрос послужил ступенькой для следующего шага в познании электрической силы.

    Тайна электризации

    Прежде всего напомню, что слово «трибо» в переводе с греческого означает «растирание». Поэтому электрические заряды, которые возникают на поверхности разнородных тел при трении их друг о друга, называются трибоэлектричеством. Понять это явление физики смогли тогда, когда открыли уже значительную часть явлений, связанных с движением и взаимодействием электрических зарядов, и определили самый маленький электрический заряд, отрицательно заряженную элементарную частицу – электрон.

    Ученые выяснили, что при трении электризуются оба вещества, их заряды оказываются одинаковыми по значению, но противоположными по знаку. Еще Фарадей для классификации расположил диэлектрики, то есть вещества, не проводящие электрический ток, в ряд, получивший его имя (трибоэлектрический ряд Фарадея): (+) мех, фланель, слоновая кость, перья, горный хрусталь, флинтглас, бумажная ткань, шелк, дерево, металлы, сера (-).

    При этом русский физик Николай Александрович Гезехус обнаружил, что диэлектрики в трибоэлектрическом ряду располагаются по мере убывания их твердости: (+) алмаз, топаз, горный хрусталь, гладкое стекло, слюда, кальцит, сера и воск (-). Эту классификацию назвали рядом Гезехуса. Отметим, что электризация вещества тем больше, чем значительнее поверхность натирающего тела. Электризуется пыль, которая скользит по поверхности тела, электризуется снег во время пурги и порошок, просеиваемый через сито. Электризуются жидкие диэлектрики. Особенно при разбрызгивании или при ударе струи о твердую или жидкую поверхность.

    Все эти явления очень опасны на производстве и на транспорте. На заводах и на прядильных фабриках металлические части обязательно заземляют, применяют ионизацию воздуха и другие меры. На транспорте при перевозке и перекачке нефти, бензина может произойти нежелательное наложение статических зарядов. Особенно опасна трибоэлектризация в авиации. В полете на фюзеляже, на крыльях и на хвостовом оперении, а также во время заправки топливом в воздухе или на земле трение частиц вызывает появление электрического заряда. Причем разность потенциалов между самолетом и окружающей средой может достигнуть полутора мегавольт! Это вызывает на острых и выступающих частях конструкции коронный разряд, который создает помехи работе радиосистем и пожароопасную ситуацию в топливных баках. Например, если не заземлить прилетевший самолет сразу после полета на аэродроме, он может оказаться весьма опасным для любого, кто коснется его корпуса.

    В чем же все-таки причина трибоэлектричества твердых тел? В основе этого явления лежит контактная разность потенциалов, то есть разность потенциалов между двумя различными металлами, металлом и полупроводником или между двумя полупроводниками, которая возникает при их соприкосновении. При этом часть электронов из поверхностного слоя тела с меньшей работой выхода переходит в тело с большей работой выхода. И в зоне контакта образуется двойной электрический слой.

    Контактная разность потенциалов сегодня широко используется в полупроводниковых приборах, в термопарах и других устройствах.

    Глава 4. Опасное родство

    Двойное рождение

    Соборный настоятель небольшого городка Каммин в Померании Эвальд Георг фон Клейст занимался электрическими опытами потихоньку. Он не публиковал своих результатов – зачем вводить во искушение прихожан – и довольствовался домашними восторгами. Одно огорчало отца-настоятеля: электрическая машина, счастливым обладателем которой он являлся, была до чрезвычайности слабой. Оттого и искры, которые случалось извлекать из ее кондуктора благочестивому экспериментатору, были едва видны при свете дня.

    Однажды, в счастливые часы занятий любимыми опытами, Клейст решил зарядить свою микстуру, чтобы усилить ее действие (отца-настоятеля мучил кашель). Он вставил в бутылочку железный гвоздь и поднес его к кондуктору машины. Несколько оборотов стеклянного шара – и жидкость должна была зарядиться… Осталось вынуть гвоздь из бутылки. Держа склянку в одной руке, почтенный священнослужитель другой взялся за головку гвоздя и… получил весьма ощутимый электрический удар. Клейст даже не испугался. Он только удивился – откуда? Его слабая машина не способна была давать и десятой доли того электричества, силу которого он почувствовал. Впрочем, что толку в раздумьях? Если результат опыта непонятен, его нужно в точности воспроизвести еще, потом еще и еще… И каждый раз бутылка с жидкостью и гвоздем, накопив электричество от маленькой машины, исправно щелкала экспериментатора по пальцу электрическими ударами.

    «Накопив электричество!» Вы чувствуете, это же совсем новое свойство неведомой силы. А что будет, если налить в склянку с гвоздем спирт или ртуть? Не получит ли она еще большую способность накапливать электричество? Через некоторое время, убедившись в том, что он действительно открыл новый способ накапливать электричество, фон Клейст описал результаты своих опытов в письме и послал его в Данциг протодиакону – своему начальнику. Протодиакон физикой не увлекался, но, будучи человеком обязательным, передал сообщение коллеги бургомистру Даниэлю Гралату, человеку вполне просвещенному. Совсем недавно тот организовал в своем городе общество естествоиспытателей, которое жаждало деятельности. И потому новинка фон Клейста была как нельзя более кстати. Бургомистр Гралат начал с того, что взял бутыль большего объема и с большим гвоздем. По-видимому, все бургомистры – по должности своей – любят, чтобы дело выглядело крупно и эффектно (вспомним Герике). Гралат обернул бутылку металлической фольгой, и электрические удары еще усилились. Ему пришло в голову составить из таких бутылей батарею и тоже зарядить ее. А затем. Бедные, бедные члены данцигского общества естествоиспытателей. Бургомистр предложил двадцати человекам взяться за руки, образовать цепь, а затем крайним в цепи коснуться пальцами гвоздя и обкладки бутыли, то есть замкнуть цепь! Эффект был потрясающий. Окрестные жители давно не слышали такого вопля…

    В истории науки и техники часто бывает, что изобретения малые и большие делаются одновременно разными людьми и совсем в разных местах. Чтобы продолжить историю чудесной «накопительной банки», давайте из славного города Данцига переедем в не менее славный город Лейден и познакомимся с почтенным профессором Мушенбруком.



    Питер ван Мушенбрук (1692–1761)


    С 1719 по 1723 год выпускник Лейденского университета Питер ван Мушенбрук был профессором Дуйсбургского университета. Особых научных заслуг у молодого профессора не отмечалось, и он перешел в университет города Клейста, а в 1740 году вернулся в alma mater, где занял кафедру физики. В Лейденском университете была прекрасная лаборатория, старые традиции и слава. Лучи этой славы привлекали учеников, которые давали доход профессорам. Мушенбрук занялся эффектными электрическими опытами. Таинственная сила интересовала всех и была в большой моде.

    Профессор умел красно и значительно говорить, надувать щеки и трясти париком, рассказывая о своих достижениях. Однако, по чести говоря, особых успехов у него не было. Но такое поведение и по сей день нередко вводит неискушенного человека в заблуждение. А уж двести-то с лишним лет назад находилось немало простаков, называвших герра профессора не иначе как великим Мушенбруком.

    Однажды слепая фортуна подсунула Мушенбруку ученика по имени Кунеус. Это был богатый лейденский горожанин, желавший развлечься опытами не иначе как в лаборатории «великого ученого». Там он, познакомившись с электрической машиной, попытался наполнить электричеством… банку с водой. Идея, по воззрениям того времени, не такая уж нелепая. Из многочисленных опытов было известно, что вода электризуется. Почему же не попробовать сохранить электричество в воде? И вот Кунеус взял банку, налил воду и опустил в нее металлический стержень, соединенный с кондуктором электрической машины. Слуге он приказал крутить ручку машины.



    Опыт в Лейдене


    Через некоторое время, считая, что вода достаточно зарядилась, экспериментатор решил вынуть стержень. Но дотронувшись до него другой рукой, любитель науки испытал, как он сам говорил впоследствии, «ни с чем не сравнимое потрясение». Кунеус ничего не понял. Уронил банку, разлил «заряженную» воду и побежал жаловаться профессору.

    Отдадим должное Мушенбруку. Он решил тут же проверить открытие своего ученика. Условия опыта в точности восстановили. Только теперь на место ученика встал учитель. Кунеус закрутил рукоятку машины.

    Сильный электрический удар поверг Мушенбрука в такое изумление, что «испытать его еще раз я не согласился бы даже ради французской короны», – писал он позже в своих воспоминаниях.



    Батарея лейденских банок


    Одним из первых узнал о лейденском эксперименте вездесущий аббат Нолле. Он тут же повторил и усовершенствовал усилительную банку, составил батарею и стал получать все более и более сильные электрические искры, настоящие маленькие молнии. В Версале, в присутствии короля и придворных, аббат выстроил сто восемьдесят мушкетеров кольцом. Велел им взяться за руки. Первому дал в руку банку, зарядил ее от машины и предложил последнему в цепи вытащить из банки металлический стержень… «Было очень курьезно видеть разнообразие жестов и слышать мгновенный вскрик, исторгаемый неожиданностью у большей части получающих удар». Король веселился. Но еще больший интерес вспыхнул в его глазах, когда на столик перед ним, рядом с электрической машиной и батареей усилительных банок, Нолле поставил маленькую металлическую клетку с птичкой. Обернув длинной цепочкой прутья клетки, он намотал другой ее конец на банку. Вторую цепочку, соединенную с металлическим стержнем банки, аббат пропустил через стеклянную трубочку и повесил над жердочкой так, чтобы птичка не могла задевать за нее головой. После этого помощник стал крутить электрическую машину. Придворные затаили дыхание. Наступил момент, когда между цепочкой и метавшимся по клетке воробьем проскочила голубая искра. Раздался треск, и несчастная пичуга свалилась без признаков жизни. Это была первая жертва искусственной молнии.

    – Браво! – сказал Людовик XV и поднялся с места.

    – Браво! – повторили придворные. Толпясь, они поспешили за своим сюзереном прочь от ученого, продемонстрировавшего им, что электричество может не только развлекать.



    Лейденская банка и разрядник


    Опыты с усилительной банкой, получившей благодаря стараниям того же Нолле название лейденской банки, были очень эффектны. Их повторяли в салонах и в ярмарочных балаганах. Голубыми искрами, извлеченными из пальца, из носа наэлектризованного человека, поджигали порох и спирт, убивали мышей и цыплят.

    В один прекрасный день семьсот благочестивых парижских монахов, взявшись за руки, образовали цепь. И все они, как один, высоко подпрыгнули и возопили от страха, когда крайние разрядили на себя невзрачную банку, наполненную таинственной электрической жидкостью.

    В Англии опыты с лейденскими банками демонстрировал в Королевском обществе врач Уильям Уотсон. В 1747 году он с помощью длинной проволоки соорудил цепь длиной не менее двух миль и «провел» электричество через Темзу. Исследуя роль жидкости, заполняющей банку, Уотсон вместо воды или спирта наполнил банку дробью, и результат не изменился. Тогда он вообще заменил содержимое банки еще одной, внутренней металлической обкладкой, соединенной с центральным стержнем. Теперь лейденская банка получила свою окончательную форму.

    Правда, его коллега доктор Бевис обложил свинцовыми пластинами просто кусок стекла. Он обнаружил, что чем больше размеры пластин и меньше расстояние между ними, тем большее количество электричества на них накапливается.

    Так в науку об электричестве пришел конденсатор – емкость, заполняемая «электрической материей». Правда, пока что принцип, или «механизм», его работы был непонятен, а величина емкости ничтожна. Но искра, получавшаяся при разряде, была способна, как молния, убить живое существо. Опасное родство, не правда ли?



    Гроза


    Лейденская банка Мушенбрука – это конденсатор, то есть емкость, накапливающая электричество. Каждый электрический конденсатор представляет собой систему из двух (или нескольких) проводников (обкладок), разделенных веществом, не проводящим электрический ток, – диэлектриком. При подключении к источнику постоянного напряжения на обкладках конденсатора накапливается электрический заряд, а в диэлектрике создается электрическое поле. Чтобы наглядно представить себе принцип действия электрического конденсатора, его можно сравнить с механической пружиной, запасающей энергию при сжатии.

    Скажите, вы боитесь грозы?

    Постарайтесь ответить на вопрос, заданный в заголовке, откровенно. Если не боитесь, то – нет, а коли страшно, то – да! Ничего постыдного в этом нет. Гроза – самое величественное, самое красивое и одно из самых. грозных явлений природы. Ведь правда? Я, например, знаю многих в принципе достаточно смелых людей, которые бегут от молнии, а еще пуще – от грома.



    Корабль, расколотый молнией


    Но попробуем нарисовать в нашем воображении картину этого явления. Причем нарисовать так, чтобы мы с вами были его участниками! Скажем, так: по пути из леса домой (будем считать, что это был поход за грибами) мы выходим на край поля. Дождь еще не начался, но тучи, низкие, набухшие влагой, обложили все небо.

    В лесу было темно, как вечером, а вышли на открытое место – и здесь света не больше. Того и гляди, польет дождь. Что делать? До дома вроде бы недалеко, да мокнуть не хочется. Пока мы топчемся в нерешительности, раздумываем, то ли под елку спрятаться, то ли под стог забиться, вдалеке начинает громыхать. Налетают первые порывы ветра, как залпы. Под их ударами поле, словно море в бурю: волны идут по хлебу, образуют водовороты из колосьев, подымают смерчи. Решайте скорее. Может быть, лучше переждать? Летние грозы скоротечны!…

    И вдруг как сверкнет! Все вокруг словно само загорается голубым свечением. Уж молнии-то и нет, а в глазах все стоит и стоит ослепительная вспышка.

    Не знаю, как вы, а я всегда после вспышки молнии начинаю считать: «И-раз, и-два, и-три…» Трах-тара-рах! – раздается на тридцатой секунде счета раскат грома. Тридцать секунд отделили его от вспышки. Значит, эпицентр грозы еще километрах в десяти. Далеко это или близко, и когда гроза дойдет до нас? Звуковая волна распространяется в воздухе со скоростью примерно 333 м/с. Обычно грозы движутся со скоростью не больше 40 км/ч. Раз так, то у нас в запасе как минимум минут пятнадцать. Бежим!

    Так и есть! Едва мы поднялись на порог, как небо раскололось над самой крышей, гром грянул одновременно с блеском молнии, и полил дождь. Косые струи полетели над землей, срывая листья с деревьев, ломая сучья. Блеск молнии и грохот разрядов слились! Но мы под крышей, и оттого в груди поднимается какой-то отчаянный мрачный восторг – вполне в духе дикой, мятущейся красоты природы.

    А ведь сколько рассказов об ужасных случаях поражения молнией на земле и на море слыхал каждый из нас.

    В тайниках души у каждого гнездится атавистический страх. Страх, воспитанный поколениями беззащитных предков, когда не было теплых домов с громоотводами, не было знаний, что такое гроза, не было даже могучего бога, единовластного в решении покарать или помиловать. А был маленький, может быть, даже голый, одинокий человечек и бесконечная мощь разгулявшейся, ликующей природы.

    Трах-тара-рах! Трах! Трах! – грохочет гром. Страшно первобытному человеку. Змеи-молнии жалят землю. Черные тучи накрыли ее, как пологом. Где голубое небо? Где ласковое солнце? Куда спрятаться от пронизывающего ветра, от холодного дождя? Может быть, бежать? Бежать быстро, еще быстрее, еще, пока не выскочит сердце из груди и не упадет человек бездыханным. Или, подобно птице и зверю, забиться под дерево, лицом в корни и лежать тихо-тихо… Ждать, пока добрые силы природы победят злые и окружающий мир снова прояснится и даст место в себе человеку. А кому не даст – тот погибнет.

    Замечательный исследователь и собиратель русского фольклора Александр Николаевич Афанасьев писал, что древние люди смотрели на окружающий мир совсем другими глазами, нежели мы. Они не отделяли своего существования от остальной природы, чувствовали себя с нею единым целым. В представлении наших предков облака и звери, небесные светила и озера ничем особенно не отличались от самого человека. Все вокруг жило своей жизнью. Враждебные силы боролись друг с другом, а значит, и с человеком. Добрые силы помогали. Все непонятное было враждебно человеку. И прежде всего такое страшное атмосферное явление, как гроза. Чтобы выжить в этой титанической борьбе стихий, человек просил помощи у тех же сил, заклинал небесный огонь, приносил ему жертвы.

    Страх перед неведомым породил почитание стихий, их обожествление. И это обожествление, а на самом деле очеловечивание таинственных сил природы делало мир не таким страшным. Если гигантскими процессами управляют боги, а сами боги – как люди, то ничто человеческое им не чуждо. Богов можно упросить, умилостивить, подкупить и. заручиться их помощью, поддержкой. Тут уж грозный мир, еще недавно наполненный мутным туманом страха, прояснялся и становился не столь ужасным.

    Это один путь оградить себя от страха – создать всесильного бога, заранее согласившись на смирение. Но есть и другой путь – познание. Конечно, гроза – зрелище могучее и эффектное, но это только атмосферное явление. Его надо изучать с должной осторожностью, но не пугаться и не видеть в нем ничего сверхъестественного.

    Великий гражданин Америки

    Жизнь Бенджамина Франклина связана с Филадельфией. Здесь и сегодня в центре города стоит старая ратуша. Когда-то она была весьма внушительным зданием, возвышавшимся над россыпью одно-двухэтажных домов и коттеджей. Сегодня старая постройка потонула среди поднявшихся стен из стекла, стали и бетона. И лишь бронзовый Уильям Пенн, основавший город в 1682 году, по-прежнему стоит на ратушной башне.

    Рядом с Федеральным резервным банком и Фондовой биржей – Академия естественных наук, университет и Институт Франклина. Здесь, в одном из банкетных залов ратуши, в 1977 году был устроен необычный праздник в честь прославленного гражданина Филадельфии Бенджамина Франклина.

    Вечером, когда темное небо усыпали звезды, проблескивающие даже сквозь туман электрического зарева, в ратуше собралось множество народа. Четверо кондитеров внесли на вытянутых руках грандиозный юбилейный торт, уставленный свечками. Свечей было так много, что в одну человеческую жизнь не вместилось бы такое количество лет. Тем временем торт поставили на стол, и человек с явно электротехническим образованием стал подключать его к электронной схеме с оптическим устройством, фотоэлементами, усилительными каскадами и реле. Все смотрели на часы. В назначенное время включился ток. Механическая часть системы пришла в движение. Она повернула оптическую трубу и нацелила ее на какую-то звезду. Прошла минута, другая, и двести с лишним свечей одновременно загорелись под общие аплодисменты и звон льда в бокалах…

    Но, пожалуй, мне пора объяснить смысл проделанных манипуляций и всей церемонии в целом. Если отнять от 1977 года год рождения Бенджамина Франклина – 1706, получится цифра 271. На торте двести семьдесят одна свеча. Связь понятна? Но вот оптическое устройство, повернувшись, нацелилось на звезду, отстоящую от Солнечной системы на двести семьдесят один световой год. И когда луч света, родившийся одновременно с Франклином, добежал до земли, он попал в объектив, прошел через фотоэлемент и замкнул реле. С треском выскочившая из разрядников электрическая искра зажгла свечи…



    Бенджамин Франклин (1706–1790)


    Бенджамин Франклин родился в семье ремесленника, переселившегося на американские берега из Англии из-за преследований по религиозным убеждениям. В семье было семнадцать детей. Бенджамин – младший. И хотя к его отрочеству многие из братьев и сестер уже стали вполне самостоятельными людьми, мальчик не смог получить систематического образования. Он проучился в школе всего год, наловчившись за это время читать и считать, а потом поступил в типографию старшего брата, обязавшись по контракту проработать там бесплатно в течение восьми лет за обучение ремеслу книгопечатания. Одним из немногих удовольствий, выпадавших на долю мальчугана, было в ту пору чтение книжек да лихие запуски воздушных змеев над холмами небольшого полуострова в глубине Массачусетской бухты, где расположился город Бостон.

    Отработав положенный срок, семнадцатилетним парнем Бен переехал в Филадельфию. И здесь дело у него пошло. Скоро он начал выпускать свою газету, занялся политикой и бизнесом. Природная любознательность сделала его начитанным и образованным человеком. А ясный практический ум позволил к тому же разбогатеть.

    В двадцать пять лет Франклин открыл первую в США публичную библиотеку. В тридцать четыре года основал Пенсильванский университет, а еще три года спустя – Американское философское общество.

    Франклину шел сорок первый год, и вряд ли он особенно задумывался над проблемами электричества. Как вдруг в город приехал некий доктор Спенсер, обещавший, как было указано в афишах, «прочесть лекцию об электричестве и показать слушателям потрясающие опыты». В те времена по городам североамериканских колоний Великобритании ездило немало всякого рода лекторов, знакомивших колонистов с новостями науки и магии, литературы и толкований Божественного Писания. Для жителей небольших провинциальных городов такие лекции служили немалым развлечением.

    Бен Франклин был в этот вечер свободен. Он в компании приятелей гулял по городу и, возможно, собирался зайти в салун, когда у кого-то из друзей возникло предложение послушать заезжего лектора. На лекцию так на лекцию. Компания пребывала в отличном расположении духа, и все направления, как говорится, были для нее равновероятны.

    Рослый и веселый, всегда полный юмора, Бен Франклин последним протиснулся в дверь. Возможно, втайне он рассчитывал подшутить и посмеяться над лектором. Но был зачарован, а потом и окончательно покорен бледными электрическими искорками, которые доктор Спенсер извлекал из повидавшей виды машины и лейденской банки. А когда он – здоровяк и силач, подпрыгнув от неожиданности, едва не свалился на пол, испытав «электрический удар», судьба его была решена. Богач, общественный и политический деятель, он семь последующих лет своей жизни отдал электрическим исследованиям. Что такое семь лет для обыкновенного человека? Ничтожный срок! Но Франклин был от природы исключительно талантливым человеком. И он успел за это время сделать столько, на что другому не хватило бы и семидесяти лет.

    По своему характеру Франклин был практиком. На науку он смотрел как на подспорье человеку в его деятельности. Он занимался исследованиями по теплотехнике и изобрел экономичную «франклиновскую печь», изучал распространение скорости звука в воде и придумал оригинальный музыкальный инструмент. Назначенный почтмейстером сначала Филадельфии, а потом и всех тринадцати североамериканских колоний Англии, он заинтересовался вопросом: почему почтовые суда из Америки в Европу ходят быстрее, чем в обратном направлении, и, собрав записки и замечания китобоев Коннектикута, составил первую в истории науки карту течения Гольфстрим. Но ни одно из этих увлечений не шло даже в сравнение с тем рвением, с каким он отдался электрическим опытам.

    Для начала он купил, изрядно поторговавшись, весь «кабинет» – все оборудование доктора Спенсера и увез к себе. Затем научился обращаться с электрической машиной и лейденскими банками и обнаружил, что если на заряженном кондукторе машины укрепить заостренный металлический прут, то электричество с кондуктора стекает постепенно, без искровых разрядов. Это было интересно.



    Электрическая машина времен Франклина


    Он всегда работал увлеченно. О результатах своих опытов писал в Лондон, члену Лондонского королевского общества Питеру Коллинсу, который тут же докладывал о них на заседаниях общества. Франклин установил, что в работе лейденской банки главная роль принадлежит вовсе не металлическим обкладкам, а диэлектрику – непроводящему веществу, разделяющему обкладки, и что заряды на обкладках банки равны друг другу и противоположны. Он писал, что, когда электричество передается внутренней обкладке банки, оно вытесняет из наружной обкладки на землю равное количество электричества, в результате чего банка оказывается заряженной.

    Идеи Франклина были приняты весьма сочувственно европейскими учеными, не имевшими в то время никакой теории для объяснения заряда лейденской банки.

    В письме от 1747 года Франклин предложил свою теорию электричества. Он считал, что существует некий электрический флюид – тончайшая жидкость, которая пронизывает все тело. Частицы электрического флюида отталкиваются друг от друга, но притягиваются частицами тел. При этом если в теле появляется избыток электрической жидкости, то оно оказывается наэлектризованным «положительно». Этим термином Франклин предлагал заменить «смоляное» электричество Дюфе. А если в теле существует недостаток электрического флюида, оно наэлектризовано «отрицательно». Отрицательным он предлагал называть «стеклянное» электричество Дюфе. Таким образом, единая электрическая жидкость как бы определяла два состояния тел – положительную и отрицательную электризацию. При этом предполагалось, что создавать электрическую жидкость ничто не может. Все дело только в ее перераспределении между телами.



    Громоотвод на башенке дома


    Франклин всегда интересовался метеорологией. И мысль о том, как защитить дома колонистов от пожаров, вызванных частыми грозами, не раз тревожила его практический ум. Увидев, как металлический штырь спокойно сводит электрический заряд с лейденской банки на землю, Франклин задумался: «Если считать молнию большой электрической искрой, то нельзя ли с помощью длинного острого металлического шеста разряжать тучи, как лейденские банки, сводя опасные заряды на землю?» Для этого прежде всего следовало убедиться, что небесное электричество и электричество, получаемое от машины, – одно и то же.

    И в один из ветреных дней, когда низкие тучи предвещали грозу, Бен соорудил из шелкового платка большого воздушного змея и запустил его под облака. К концу бечевки он привязал металлический ключ, а к ключу, в целях безопасности, – шелковую ленту, за которую держался сам. По шелку электричество не передавалось.

    Скоро веревка намокла. Где-то вдалеке громыхнул первый гром. Франклин осторожно поднес к ключу лейденскую банку, и длинная голубая искра клюнула центральный электрод. «Браво! Есть электричество! Я его отнял у неба!» Он заряжал одну банку за другой, убеждаясь, что небесное электричество, добытое змеем, ничуть не отличается от производимого трением. «Прекрасно! Больше я не позволю небесному огню сжигать дома и корабли, убивать людей и наносить ущерб обществу. Заостренные шесты сведут молнии на землю!» Франклин начал кампанию за повсеместную установку громоотводов.

    Громоотвод изобрел Франклин. Правда, в литературе есть сведения, что уже в Древнем Египте жрецы ставили возле храмов обитые медью высокие шесты, которые отводили якобы молнию от храмовых кровель. Так это или нет, проверить сегодня трудно. Особенно если учесть, что Египет не лежит в полосе частых гроз. Правда, там они все-таки случаются. А вот в полярных районах, выше восемьдесят второй параллели северной широты и пятьдесят пятой – южной, гроз по статистике почти не наблюдается. В средних широтах число грозовых дней колеблется между двадцатью и сорока за год, а в тропиках, особенно в экваториальной зоне, дней с грозами бывает до ста пятидесяти за год! Впрочем, климат – штука сложная. Говорят, на острове Ява, что в Малайском архипелаге, общее число гроз за год достигает чуть ли не полутора тысяч. Здесь в течение суток они бушуют по нескольку раз, и день без грозы – большой праздник. Но даже если наши предки и умели устраивать грозозащиту, то нужно сказать, что ко времени Франклина успехи в этой области были прочно забыты.

    Свою теорию громоотвода Франклин изложил в письме в Королевское общество от 17 сентября 1753 года. Он предлагал ставить возле домов заостренные железные прутья, поскольку острие станет «высасывать» электричество из облаков мало-помалу и не допустит образования молнии. Да и сама молния, если дать ей путь «надлежащей проводимости», спокойно уйдет в землю, не сжигая и не разрушая строений.

    В Филадельфии к концу XVIII века громоотводы были поставлены на все крупные здания. Лишь на доме, принадлежащем французскому посольству, дипломаты никак не соглашались водрузить спасительный шест. И что же – словно в назидание, в 1782 году в него ударила молния, произведя значительные разрушения.

    В конце концов даже те, кто не соглашался с выводами Франклина, вынуждены были признать полезность громоотводов. Люди кинулись в другую крайность. Металлические штыри и заостренные прутья устанавливались на каретах, дамы в Париже носили шляпки с громоотводами. Но лишь после того, как молния ударила в шпиль Петропавловского собора и зажгла его, началась эра строительства громоотводов для России.



    Конструкция громоотвода Франклина


    В Европе Лондонское королевское общество напечатало «электрические» письма Франклина отдельной книжкой, и она хорошо разошлась. Однако слишком много людей в Старом Свете занимались исследованиями атмосферного электричества, чтобы сразу принять на веру заключения «янки из-за океана».

    Даже в Лондоне нашлись члены общества, утверждавшие опасность привлечения молний к крышам зданий путем установки на них заостренных шестов – громоотводов и посему предлагавшие надевать на острия шары… Только шары могли сделать молнию безвредной!

    На континенте, бывало, крестьяне приписывали громоотводу засуху, поражающую их поля. Немало было и других вздорных мнений. Правда, время от времени сама природа подталкивала людей на скорейшее решение «острых» вопросов.

    Французский ученый Доминик Араго в своей книге «Гром и молния» пишет: «Утром 18 августа 1769 года гром ударил в башню Святого Назария в городе Брешиа. Под основанием этой башни находился подземный погреб, в котором хранился порох, принадлежавший Венецианской республике. Огромная масса взрывчатки воспламенилась мгновенно, и шестая часть зданий прекрасного города была разрушена, а все остальное было потрясено так, что угрожало падением. При этом погибло три тысячи человек. Башня Святого Назария была вся подброшена на воздух и упала обратно на землю в виде каменного дождя. Обломки ее рассыпались на огромном расстоянии». Нет сомнений, что такие события весьма усиливали интерес к громоотводам в Европе.

    Исследования атмосферного электричества ширились, захватывая все большее число ученых-естествоиспытателей в самых разных странах. Росло и количество опасных опытов по извлечению искр из наэлектризованных металлических шестов, установленных на крышах.

    Хуже дело обстояло с теорией. Если отталкивание положительно заряженных тел выводы Франклина объясняли достаточно просто, то такое же отталкивание отрицательно заряженных тел объяснить не удавалось. Но Франклин не унывал.

    Бен Франклин не только работал весело, но и весело отдыхал. «Ввиду того что наступает жаркая погода, когда электрические опыты доставляют мало удовольствия, мы думаем покончить с ними на этот сезон, завершив все довольно веселым пикником, – писал он в Англию, где у него было немало друзей. – На берегах реки Скулкилл искра, переданная с одного берега на другой без какого-либо проводника, кроме воды, зажжет одновременно на обоих берегах реки спиртовки… Индейка к нашему ужину будет умерщвлена электрическим ударом и зажарена на электрическом вертеле огнем, зажженным наэлектризованной банкой; мы выпьем за здоровье всех известных физиков. из наэлектризованных бокалов под салют орудий, стреляющих от электрической батареи…» Не этот ли стиль пытались возродить и почитатели ученого на празднике, описанном в начале рассказа?

    Только семь лет занимался Франклин своими опытами. За это время он не оставлял и общественной деятельности. По его инициативе в Филадельфии возникла «Академия» – учебное заведение, состоящее из средней и высшей школы, был открыт первый в Америке общественный госпиталь. Его выбрали мировым судьей. А в период начавшейся войны между английскими и французскими колониальными войсками Франклин занимался организацией милиции своего штата. На конгрессе представителей колонии в Олбани Франклин предложил английской администрации план объединения федерации колоний в единое самоуправляющееся государство, но этот проект, естественно, не прошел. Оказавшись в оппозиции проанглийски настроенному губернатору, Франклин вынужден был ехать в Лондон, чтобы добиться от правительства метрополии хоть какого-то ограничения прав назначаемых оттуда чиновников. На этом его ученые занятия прервались. Он провел в Англии довольно долгое время. Потом возвратился туда еще раз. Писал политические памфлеты. Поехал с дипломатической миссией во Францию…

    Последние годы жизни Франклин спокойно провел в кругу своей семьи. Много читал, интересовался наукой и поддерживал начинавшее развиваться аболиционистское движение за освобождение негров. Он был принципиальным противником рабства. И сегодня, подводя итоги этой славной жизни, согласимся, что на его памятнике вполне уместны слова: «Eripuit coelo fulmen, sceptrumque tirannis» – «Он отнял молнию у небес и власть у тиранов».

    Господа профессоры Императорской Санкт-Петербургской академии наук

    Все-таки это было очень удивительно: потереть кожей или суконкой обыкновенное, ничем не примечательное холодное стекло – и извлечь из него искру, напоминающую миниатюрную молнию! В середине XVIII века трудно было даже представить себе что-нибудь более впечатляющее. Немудрено, что столько людей самого разного чина и звания занимались электрическими опытами. Цель у всех была одна – получать от машин как можно более мощные искры. Однако, как ни старались изобретатели совершенствовать свои машины, получались они довольно слабосильными. Да и непонятно было, когда вообще следовало считать тело наэлектризованным. Никто не знал, как измерять количество электрической материи.



    Здание Императорской академии наук в Санкт-Петербурге


    По доскам тротуара набережной Васильевского острова в Санкт-Петербурге идут двое. Держат путь от здания Академии наук к Первой линии.

    Развеваются на ветру полы голубых академических кафтанов с черными отворотами. В желтых пуговицах играют лучи низкого солнца. Один из идущих высок, телосложения крепкого и шагает широко, размашисто. Второй – более субтилен и идет аккуратнее. Он инстинктивно следит за тем, чтобы пыль от башмаков не садилась на белый жилет и панталоны!… Это – господа профессоры академии. Первый – Михаил Васильевич Ломоносов, второй – друг его любезный, профессор Георг Вильгельм Рихман, из немцев. Оба с утра присутствовали на заседании академического собрания, а теперь поспешают домой…



    Михаил Васильевич Ломоносов (1711–1765)


    В 1744 году академическое собрание Петербургской академии наук обсудило обращение Леонарда Эйлера, призывающее заняться исследованием причин электрических явлений, и приняло решение: «Произвести также и здесь исследования над явлениями электричества и тщательно изучить все сочинения, написанные по этому вопросу, а те, коих нет здесь, как можно скорее добыть.»

    Выполнение этого задания и принял на себя профессор Рихман. И первый вывод, который он сделал после предварительных опытов в «электрической каморе» – лаборатории при академии, – заключался в необходимости научиться измерять «силу электрическую». Ибо лишь зная оную, перейти сможет электричество из области «кунштюков» в область науки.

    В опытах друга и в обсуждении результатов горячо участвовал и Ломоносов. Рихман составил программу работ. Ломоносов перевел ее на русский язык. Рихман построил первую в России электрическую машину. Ломоносов помог ему наметить круг вопросов, на которые надлежит дать ответы.



    Георг Рихман (1711–1753)


    В 1745 году Рихман сконструировал «электрический указатель» из длинной, примерно полуметровой, линейки и угловой шкалы.

    Вдоль линейки висела льняная нить. Ломоносов писал, что это была точно «отвешенная нить» и по углу отклонения ее от вертикали можно было измерять электрическую силу. «Подобный указатель является надежным прибором для распознания, больше или меньше градус электричества в той или иной электрической массе» – так характеризовал свой прибор сам изобретатель. Правда, прибор годился только для относительных измерений. Рахман писал, что сила воздействия между нитью и линейкой с увеличением расстояния убывала «по некоторому пока еще не известному закону». Он же делал вывод: «Я еще до тех пор не буду утверждать, что этим указателем можно точно измерять электричество, пока не будет развита теория электрического вихря».

    С этого времени различные приборы для оценки электрической силы стали появляться и в других странах. Аббат Нолле вместо одной нити стал применять в своем электроскопе две. А англичанин Джон Кантон добавил к ним еще и бузинные шарики. Лет через двадцать, для уменьшения внешних помех, физики стали заключать подобные измерительные приборы в банки и коробки, под стекло. Получились электроскопы и электрометры.

    Теперь исследователи по отклоняющимся нитям или листочкам могли судить, в каком теле накопилось больше электричества, а в каком меньше. Научились делить накопленное электричество на порции. Процесс деления происходил так: изолированным ненаэлектризованным металлическим шариком исследователь касался другого, такого же по размерам, так же изолированного, но наэлектризованного. Электрический заряд делился пополам, и электроскоп показывал, что на обоих шариках собралось одинаковое количество электричества.

    В дальнейшем количество электричества, содержащееся в теле, стали называть электрическим зарядом. Два электрических заряда, или два количества электричества, считались одинаковыми, если при прочих равных условиях они оказывали на одно и то же тело одинаковое воздействие, например, раздвигали листочки электроскопа на одинаковый угол.

    Весть об опытах Франклина с воздушным (или атмосферным) электричеством разнеслась по всем странам. В России об этом узнали впервые из статьи, переведенной из Кельнской газеты и помещенной в «Санкт-Петербургских ведомостях» в 1752 году. Вот что там было написано:

    «Никто бы не чаял, чтоб из Америки надлежало ожидать новых наставлений о электрической силе, а однако, учинены там наиважнейшие изобретения. В Филадельфии, в Северной Америке, господин Вениамин Франклин столь далеко отважился, что хочет вытягивать из атмосферы тот страшный огонь, который часто целые земли погубляет. А именно делал он опыты для изведания, не одинакова ли материя молнии и электрической силы, и действие догадку его так подтвердило, что от громовых ударов следующим образом охранять себя можно: на вершинах строений или кораблей надлежит утвердить железные востроконечные прутья, перпендикулярно поставленные, вышиною от 10 до 12 футов и для охранения от ржи (то есть ржавчины – А. Т.) позолоченные; а от нижнего конца прутьев спустить проволоку к подошве строения наземь или от мачтового каната на кораблях.



    Электроскоп Кавалло XVIII века


    Как чинили сей опыт в марлийском саду железным прутом, вышиною в 40 футов поставленным и на электризованном теле утвержденным, во время грома, который шел через то место, где был прут, то бывшие при том персоны вытянули такие искры и движения, которые подобны тем, кои производятся обыкновенною электрической силою. В Париже 18 мая из утвержденного на 99 футов вышиною и в виноградном саду поставленного прута вытягивали многие искры через полчаса и более в то самое время, как густая туча стояла над тем местом. Сии искры совершенно походили на исходящий из фузеи огонь и причиняли такой же стук и такую же опасность. Другими опытами то же подтверждено, и явилось, что помощью востроконечных прутов у громовых туч огонь отнять можно».

    Спустя некоторое время в той же столичной газете была напечатана еще одна статья. В ней говорилось:

    «Понеже в разных ведомостях объявлено важнейшее изобретение, а именно: что электрическая материя одинакова с материей грома, то здешний профессор физики экспериментальной г. Рихман удостоверил себя о том и некоторых смотрителей следующим образом. Из середины дна бутылочного выбил он черепок-иверень и сквозь бутылку продел железный прут длиной от 5 до 6 футов, толщиною в один палец, тупым концом, и заткнул горло ее коркой. После велел он из верхушки кровли вынуть черепиц и пропустил туда прут, так что он от 4 до 5 футов высунулся, а дно бутылки лежало на кирпичах. К концу прута, который под кровлею из-под дна бутылочного высунулся, укрепил он железную проволоку и вел ее до среднего апартамента все с такою осторожностью, чтобы проволока не коснулась никакого тела, производящего электрическую силу. Наконец, к крайнему концу проволоки приложил он железную линейку, так что она перпендикулярно вниз висела, а к верхнему концу линейки привязал шелковую нить, которая с линейкой параллельна, а с широчайшею стороною линейки в одной плоскости висела.

    Описание сих приготовлений к опыту читал он при исследовании объявленного отдаления грома от строения в начале сего июля месяца в академическом собрании членам, и начал уже с начала оного месяца по вся дни следовать, отскочит ли нить от линейки и произведет ли потому какую электрическую силу, токмо не приметил ни малейшей перемены в нити. Чего ради с великою нетерпеливостию ожидал грому, который 18 июля в полдень и случился.

    Гром, по-видимому, был не близко от строения, однако ж он после первого удара тотчас приметил, что шелковая нить от линейки отскочила, и материя с шумом из конца линейки в светлые искры рассыпалась и при каждом осязании причиняла ту же чувствительность, какую обыкновенно производят электрические искры. У некоторых, державших линейку, шло потрясение по всей руке. Шум исходящей материи был сначала столь велик, что некто, бывший при том на несколько шагов от линейки, шум мог слышать. Во время дождя примечены на линейке электрические искры, также и после грома.

    Все сие продолжалось больше полутора часа, и электрические действия были то больше, то меньше.

    В третьем часу пополудни окончилась электрическая сила, и более не слышно было, чтобы гремело. Посему не надобно к тому опыту ни электрической машины, ни электризованного тела, но гром совершенно служит вместо электрической машины!…

    …Итак, совершенно доказано, что электрическая материя одинакова с громовою материею, и те раскаиваться станут, которые преждевременно маловероятными основаниями доказывать хотят, что обе материи различны».

    В июле 1752 года в «Санкт-Петербургских ведомостях» появилось еще одно сообщение об опытах Рихмана: опыты с электричеством чрезвычайно интересовали тогдашнее русское общество.

    «Сего июля 21 числа г. профессор Рихман имел паки случай примечать электрическую силу громовых туч при некоторых г.г. профессорах и членах академических, также при других ученых и академиках.

    В пятом часу пополудни, хотя громовая туча столь же близко нашла, как прежде, однако электрические явления на линейке не в такой силе, как 18 числа, оказались. К цепи приложил он клейстов, или мушенброков образец, чтобы умножить электрическую силу, а именно, соединил он железную проволоку с цепью, пропустил в склянку, по горло водою налитую. Горло у склянки было сухо. Склянку он поставил в сосуд, водою налитый, а в судно с водою положил кусок железа. Когда сие железо держали одною рукою, а другою трогали электризованную громом линейку, то чувствовали часто потрясение в обеих руках, так же как при сих обстоятельствах в художественном электризовании обыкновенно делается.

    Итак, утверждает он и сие, что материя грома не разнится и в сем от электрической материи. И понеже все тела от распространенной электрической силы электризованы быть могут, то должны все-таки тела, например все металлы, люди, вода, лед, дерево и проч., с проволокою соединенные и надлежащим образом укрепленные, материею грома быть электризованы, и понеже из проволоки исходят подлинные электрические искры, то от сих искр должен спирт винный, самый крепкий, нефть, спирт Фробениев и прочее загореться; и понеже г. профессор Рихман художественным электрическим действием делает блещащимися имена и фигуры, то и натуральным или электрическим действием грома могут блещащимися учинены быть литеры и фигуры. Итак, гром, сколь он ни страшен, может быть удовольствием и потехою».

    Здесь «Ведомости» предлагают использовать электричество для столь любимой в России иллюминации и «огненной потехи» – фейерверков. В те годы никто из естествоиспытателей толком не представлял себе всей опасности производимых экспериментов, хотя опыты по умерщвлению животных проделывались в разных странах. Не существовало и никаких рекомендаций по технике безопасности. Все это привело к тем трагическим последствиям, которыми завершились опыты Георга Рихмана в России.

    26 июля 1753 года над Санкт-Петербургом собралась гроза. Рихман и Ломоносов приготовились «чинить электрические воздушные наблюдения с немалою опасностию для жизни». Дом Ломоносова стоял на Второй линии Васильевского острова. Рихман жил неподалеку, на пересечении Пятой линии и Большого проспекта. И вот загрохотали первые раскаты.



    Образование воздушных потоков и грозовых облаков. Из книги М. В. Ломоносова


    «Что я ныне к вашему превосходительству пишу, за чудо почитайте, для того, что мертвые не пишут, – так начинает Михайла Ломоносов описание этого эксперимента в письме к своему покровителю Ивану Шувалову, – я не знаю еще или по последней мере сомневаюсь, жив ли я или мертв. Я вижу, что господина профессора Рихмана громом убило в тех же точно обстоятельствах, в которых я был в то же самое время. Сего июля 26 числа в первом часу пополудни поднялась громовая туча от норда. Гром был нарочито силен, дождя ни капли. Выставленную громовую машину посмотрев, не видел я ни малого признаку электрической силы. Однако, пока кушанье на стол ставили, дождался я нарочитых электрических из проволоки искр, и к тому пришла моя жена и другие; и как я, так и они беспрестанно до проволоки и до привешенного прута дотыкались, за тем что я хотел иметь свидетелей разных цветов огня, против которых покойный профессор Рихман со мною споривал. Внезапно гром чрезвычайно грянул в то самое время, как я руку держал у железа и искры трещали. Все от меня прочь бежали. И жена просила, чтобы я прочь шел. Любопытство удержало меня еще две или три минуты, пока мне сказали, что эти простынут, а потом и электрическая сила почти перестала. Только я за столом посидел несколько минут, внезапно дверь отворил человек покойного Рихмана, весь в слезах и в страхе запыхавшись. Я думал, что его кто-нибудь на дороге бил, когда он ко мне был послан; он чуть выговорил: профессора громом зашибло».

    В официальном описании случившегося говорилось о том, что в этот день, то есть 26 июля 1753 года, заметив, что собирается гроза, Рихман хотел показать граверу Соколову сущность своих электрических опытов. Соколов должен был изобразить их на виньетке к речи Рихмана, которую тому предстояло произнести на торжественном собрании академии…

    В сенях дома Рихмана у окошка «стоял шкаф, вышиною в 4 фута, на котором учреждена была машина для примечания электрической силы, называемая указатель электрической, с железным прутом толщиной в палец, а длиною в 1 фут, которого нижний конец опущен был в наполненный отчасти медными опилками хрустальный стакан. К сему пруту с кровли оного дома проведена была сквозь сени под потолком тонкая железная проволока. Когда г. профессор, посмотревши на указателя электрического, рассудил, что гром еще далеко отстоит, то уверил он грыдоровального мастера Соколова, что теперь нет еще никакой опасности, однако когда подойдет очень близко, то-де может быть опасность.

    Вскоре после того как г. профессор, отстоя на фут от железного прута, смотрел на указатель электрической силы, увидел помянутый Соколов, что из прута без всякого прикосновения вышел бледно-синеватый огненный клуб, с кулак величиною, шел прямо ко лбу г. профессора, который в то самое время, не издав ни малого голосу, упал назад, на стоящий позади его у стены сундук. В самый же тот момент последовал такой удар, будто бы из малой пушки выпалено было, отчего и оный грыдоровальный мастер упал на землю и почувствовал на спине у себя некоторые удары, о которых после усмотрено, что оные произошли от изорванной проволоки, которая у него на кафтане с плеч до фалд оставила знатные горелые полосы.

    Как оной грыдоровальной мастер опять встал и за оглушением оперся на шкаф, то не мог он от дыму видеть лицо г. профессора и думал, что он только упал, как и он; а понеже, видя дым, подумал он, что молния не зажгла ли дому, то выбежал еще в беспамятстве на улицу и объявил о том стоящему недалеко оттуда пикету.



    Гибель профессора Рихмана от удара шаровой молнии


    Как жена г. профессора, услышавши такой сильный удар, туда прибежала, то увидела она, что сени дымом, как от пороху, наполнены. Соколова тут уже не было, и как она оборотилась, то приметила, что г. профессор без всякого дыхания лежит навзничь на сундуке у стены. Тотчас стали его тереть, чтоб отведать, не оживет ли, а между тем послали по г. профессора Краценштейна и по лекаря, которые через десять минут после удару туда пришли и из руки кровь ему пустили; однако крови вышло только одна капелька, хотя жила, как то уже усмотрено, и действительно отворена была. Биения же жил и на самой груди приметить невозможно было. Г. Краценштейн несколько раз, как то обыкновенно делают с задушившимися людьми, зажал г. Рихману ноздри, дул ему в грудь, но все напрасно».

    Смерть Рихмана потрясла ученый мир. Церковь же потребовала немедленного запрещения «богопротивных опытов», уверяя, что Рихмана постигла «Божья кара». Интересно, что Ломоносов заранее предполагал возможность такого вывода. И в письме к Шувалову сделал такую приписку: «…чтобы сей случай не был протолкован противу приращения наук, всепокорнейше прошу миловать науки…»

    С речами и статьями, доказывавшими, что смерть Рихмана не есть «Божеское наказание», выступали многие ученые в разных странах.

    Тем не менее канцелярия Петербургской академии наук запретила даже упоминать слово «электричество» на предстоящем торжественном собрании. Все эти меры вызвали временное ослабление интереса к электрическим явлениям. Ломоносов отдал немало сил для продолжения начатых в России работ. Он пытался найти способы безопасного наблюдения и измерений «электрической громовой силы», написал сочинение «Слово о явлениях воздушных, от электрической силы происходящих». По его настоянию академия объявила международный конкурс на лучшую теорию электричества.



    «Электрическая стрела» на крыше дома Ломоносова


    К 1756 году, когда окончился срок конкурса, предлагавшего «сыскать подлинную электрической силы причину и составить точную ее теорию», в академию поступило довольно много работ. Лучшей среди всех были признаны мемуары, присланные из Берлина и подписанные именем Иоганна Эйлера, сына великого математика. Сам Леонард Эйлер права участвовать в конкурсе не имел, поскольку являлся членом Собрания Петербургской академии. Однако после того как результаты конкурса были объявлены, Эйлер признался в обмане. Мемуары принадлежали ему. Свои рассуждения Эйлер строил на предположении, что сверхтонкая материя, создающая электрические силы, есть не что иное, как светоносный эфир. И все известные исследователям электрические явления относил за счет «нарушений равновесия в эфире», сгущения его или разрежения вблизи электризуемых тел. Таким образом, он обходился без введения «специальной электрической материи» Франклина.

    К тому же 1756 году относится незаконченная и неопубликованная диссертация Ломоносова «Теория электричества, разработанная математическим способом». Ломоносов, как и Эйлер, исходил из эфира, но электризацию тел предполагал результатом вращательного движения частиц эфира внутри самих тел и в окружающем их пространстве.

    Обе теории были принципиально новыми, потому что сводили причину электрических явлений не к свойствам мифической электрической жидкости, а к специфическим формам движения эфира, признанного реально существующим наукой того периода. Правда, отрицая движения электрической жидкости, теории Эйлера и Ломоносова носили чисто электростатический характер и приводили к неправильному представлению о грозозащите и об устройстве громоотводов.

    Ломоносов писал о двух способах защиты от грозы. Первый заключался в сооружении на пустырях и на крышах зданий тщательно изолированных от земли «электрических стрел» – «дабы ударяющая молния больше на них, нежели на головах человеческих и на храминах, силы свои изнуряла».

    Второй способ грозозащиты русский академик видел в «потрясении воздухом». Это была дань старым воззрениям, гласившим, что отогнать грозу можно колокольным звоном.

    «Белые пятна» на карте науки

    Казалось бы, люди, занявшиеся изучением электрических сил, в первую очередь должны были обратить внимание на атмосферное электричество. Ведь оно, как никакое другое, ближе всего – под руками. Однако на деле вышло совсем не так. Долгое время никому даже в голову не приходило, что молния и крошечная искорка, прыгающая с натертого куска янтаря, – явления одной природы, разные лишь по своему масштабу. Немалую роль в этом сыграло заблуждение древних философов, убежденных в том, что мир Земли не имеет ничего общего с миром Неба. Лишь в XVIII веке наступило время объединить наблюдаемые явления и уверенно заявить о том, что небесное и земное электричество – явления одной природы. И только в XX столетии люди наконец уяснили себе механизм образования грозы.

    Что такое молния? Электрическая искра, возникающая между разноименно заряженными облаками или между облаком и землей. Гром – треск этой искры. В канале молнии воздух очень быстро нагревается, а нагревшись, расширяется, как при взрыве. Возникают звуковые колебания, воспринимаемые нами как гром.

    Возникает вопрос: откуда появляются электрические заряды в атмосфере? Вы, наверное, не раз слышали об ультрафиолетовом и корпускулярном излучении Солнца. Проникая в верхние слои атмосферы, это излучение разбивает нейтральные молекулы воздуха на заряженные частицы – ионы, ионизирует воздух. То же действие оказывают и космические лучи, пронизывающие всю толщу атмосферы. А у самой поверхности земли воздух подвергается атакам излучения радиоактивных элементов, которые в изобилии содержатся в земной коре.

    В конце XIX века ученые пришли к выводу, что в атмосфере Земли на высоте примерно шестидесяти километров начинается ионизованная область – ионосфера, проводящий слой атмосферы, который, как скорлупой, охватывает планету. Это позволяет грубо приближенно рассматривать земную поверхность и ионосферный слой как обкладки конденсатора с разностью потенциалов около 300 кВ. В районах ясной погоды этот природный конденсатор постоянно разряжается, поскольку ионы под действием сил электрического поля уходят вниз к Земле. А вот в районах грозовой деятельности картина иная. Считается, что в каждый момент времени грозой охвачен в среднем примерно 1 % земной поверхности. В этих районах мощные токи текут снизу вверх, компенсируя «разряд» в «ясных» районах. Таким образом, грозовые облака – это не что иное, как природные электрические генераторы, поддерживающие в равновесии всю систему сложного электрического хозяйства во всеземном масштабе.

    Если вспомнить уроки физики в школе, то и сам механизм образования грозы перестает быть тайной: мощные вертикальные потоки поднимают вверх влажный теплый воздух. Наверху воздух расширяется и при этом охлаждается. Водяной пар конденсируется в капельки воды, которые собираются в кучевые облака. Давление у земли понижается, воздух с периферии устремляется к центру. Возникает ветер. Вот и готова первая стадия грозы.

    Вторая стадия начинается с выпадения дождя. На высоте в облаке появляются ледяные кристаллы. Сильные вихри перемешивают наэлектризованные частицы облака, возникают искры-молнии, гремит гром. Восходящие и нисходящие потоки воздуха крутят водяные струи ливня то в одну, то в другую сторону. Вот когда гроза в разгаре!

    А потом наступает стадия разрушения грозы. Во всей ее области развиваются нисходящие потоки воздуха.



    Атмосферный конденсатор из грозовых туч


    Не получая больше от земли ни влаги, ни тепла, гроза затихает. Грозовое облако тает. Ветры из сходящихся превращаются в расходящиеся. «Вылившийся» с высоты холодный воздух, свежий, напоенный озоном, говорит о прекращении грозы.

    Вот так! Обыкновенный феномен природы. Правда, не следует забывать, что для такого вот бесстрастного объяснения понадобились не годы, а столетия страха, мифов, а потом упорного труда собирания фактов и их осмысления. Понадобились думы и рассказы старейшин, колдовские действия магов и жрецов, размышления философов и, наконец, опыты естествоиспытателей. Опыты с неизвестным, опыты, сопряженные со смертельной опасностью, и все-таки – опыты…

    В одной из книг по метеорологии в разделе «Возникновение грозы» написано: «В настоящее время хотя причины образования всех видов гроз и неизвестны точно, все же сами грозы уже настолько изучены, что можно указать основные явления, происходящие при грозе.» Главное в этой фразе – ее начало, признающее, что и по сей день точные причины образования гроз нам неизвестны.

    Молнии бывают не только в грозовых облаках. Вулканологи, изучающие извержения, много раз отмечали молнии в облаках вулканического пепла. Мир был взволнован сообщениями о катастрофических взрывах на японских супертанкерах. Самое необычное заключалось в том, что случались они, как правило, во время промывки их колоссальных танков сильной струей воды… Одним из объяснений является предположение, что при промывке возникали облака из электрически заряженных нефтеводяных капель. Создавалось электрическое поле с высокой напряженностью и благоприятные условия для образования электрического разряда…

    Не может не поражать удивительная способность атмосферы накапливать и удерживать электрический заряд. Сегодня мы знаем, что земля, земная поверхность заряжена всегда отрицательно. В атмосфере содержатся положительные объемные заряды, плотность которых уменьшается с высотой. В целом же для мирового пространства Земля с ее атмосферой, по-видимому, электрически нейтральное тело.

    Ежегодно над земным шаром бушует около сорока пяти тысяч гроз. Различные специалисты приводят разные цифры, но это не принципиально. Примерно каждые четыре секунды где-то сверкает молния. И если учесть, что средняя гроза по потенциальной мощности может быть сравнима с атомной бомбой, то просто плакать от бессилия хочется – столько энергии в мире пропадает зря!

    Ученые много знают о грозах. Их изучают с земли, фотографируют из космоса со спутников. Их изучают изнутри. Самолеты, начиненные измерительной аппаратурой, кружатся около эпицентра грозы. Приборы фиксируют силу заряда, напряженность электрического поля, степень ультрафиолетового и рентгеновского излучений при блеске молний.

    В период с 1928 по 1933 год три швейцарских физика – Браш, Ланж и Урбан – решили попробовать использовать энергию молний для своих опытов. На горе Дженерсо, где атмосфера всегда щедро насыщена электричеством, они подвесили на высоте около восьмидесяти метров над землей металлическую сетку, которая должна была собирать из туч положительные заряды. Очевидцы рассказывали, что это было страшное устройство, работа с которым требовала отчаянного мужества. Сеть исправно работала, собирая заряды и повышая свой потенциал. Когда он достигал максимума, воздушный промежуток с оглушительным треском пробивала огненная искра длиной более четырех метров! Разряд длился примерно сотую долю секунды, а сила тока при этом достигала десятков тысяч ампер!

    В один из недобрых дней во время опасного эксперимента от разряда такой молнии, пойманной в сеть, погиб Курт Урбан, после чего эксперименты на горе Дженерсо прекратились. Правда, прошло совсем немного времени, и они возобновились в других местах. В основном они велись по военным ведомствам.

    Специалисты научились и на земле, в лабораторных условиях, получать искусственные молнии. И все-таки. в образовании молнии есть еще немало загадочного для науки. Судите сами: критическая напряженность поля, при которой в лабораторных условиях возникает электрическая искра, равна примерно 3000 кВ/м. А в природе достаточно 200–300 кВ/м. Как же возникают молнии? Точного ответа на этот вопрос пока у науки нет!

    Как-то раз в завязавшемся разговоре с приятелями-физиками услышал я любопытное суждение: «Самым энергоемким аккумулятором относительно единицы массы была бы шаровая молния.»

    Шаровая молния – редко встречающееся явление. Она выглядит как довольно устойчивый светящийся шар размером от теннисного до футбольного мяча. Образуется обычно в грозу следом за ударом линейной молнии. Состоит же шаровая молния предположительно из неравновесной плазмы и существует от одной секунды до нескольких минут. С тех пор как люди перестали видеть в явлениях природы «гнев Божий», о шаровой молнии написано множество заметок, статей, книг, и все равно никто из физиков точно не знает, что это такое.

    Одним из первых ученых, грамотно описавших это явление, был Араго. Правда, в своей статье он больше спрашивал, чем объяснял. И в конце рассуждений с грустью констатировал: «Как и где образуются эти скопления весомой материи, сильно пропитанные веществом молний? Какова их природа?.. По этому поводу в науке существует пробел, который необходимо заполнить». Эти слова написаны в книге «Гром и молния» в середине XIX столетия. В 1885 году книга французского ученого была переведена и издана в Петербурге.



    Доминик Франсуа Араго (1786–1853)


    Араго полагал, что шаровая молния – это шар с гремучим газом – соединением азота с кислородом, – насквозь пропитанный «веществом молнии». Такой шар, по мнению ученого, возникал в грозовых облаках, заряжался наподобие конденсатора электричеством и падал на землю. Изолятором, или диэлектриком, в таком конденсаторе могли служить слои сухого, уплотненного электрическими силами воздуха между заряженными оболочками. Когда осуществлялся «пробой» изоляции, искра поджигала гремучие газы – и шар взрывался. Если же «пробоя» не происходило, электрическая энергия могла тихо «стечь» с шара – и он исчезал. Было еще много теоретических гипотез о природе этого загадочного явления. Одни авторы считали, что шаровая молния несет в себе запас энергии. Другие, напротив, предполагали, что источник энергии шаровой молнии находится вне ее оболочки…

    В 1936 году в редакцию английской газеты «Дейли мейл» пришло письмо одного читателя. Вот что он писал:

    «Сэр! Во время грозы я видел большой раскаленный шар, спустившийся с неба. Он ударил в наш дом, перерезал телефонные провода, зажег оконную раму и затем исчез в кадке с водой, стоявшей под окном. Вода кипела в течение нескольких минут, но когда она достаточно остыла, чтобы можно было поискать шар, я ничего не смог обнаружить в бочке.

    У. Моррис. Дарстоун, Херфорд».

    Королевский астроном, которого попросили прокомментировать это письмо, сообщил: «По-видимому, то, что видел ваш корреспондент, представляет собой очень редкое явление, известное под названием. шаровой молнии.»

    Специалисты подсчитали примерную энергию, затраченную на кипячение воды в кадке. Получилось от 1 до 3 кВт · ч. Это, в свою очередь, позволило оценить удельную энергоемкость шаровой молнии как минимум в 100 кВт · ч.

    Похожий случай наблюдал в Закарпатье некто С. Мах. «В августе 1962 года, – писал он в письме, – около 11–12 часов вечера в корыто с водой для скота упала шаровая молния размером с теннисный мяч. Она светилась цветами радуги в течение около 10 секунд. Вода из корыта почти полностью выкипела, на дне лежали сварившиеся лягушки. Размер корыта 0,3 х 2,5 м. Глубина слоя воды – 15 см. В двух других корытах также были обнаружены сварившиеся лягушки».



    Шаровая молния на крестьянской ферме


    В этом случае описываемая шаровая молния должна была иметь значительно большую удельную энергоемкость. Масса выкипевшей воды равнялась примерно ста килограммам.

    Из чего же должна состоять шаровая молния, чтобы произвести такое действие? Это наверняка не «горючее вещество», потому что тогда оно должно было бы обладать фантастической эффективностью. Напомню, что даже такое «идеальное горючее», как газ ацетилен, имеет энергоемкость во много раз меньше.

    Ученые выдвигали множество гипотез о природе шаровой молнии. И каждую из них время и новые факты низводили с пьедестала. «Яков Ильич Френкель был человеком, которого просто оскорбляло существование непонятных физических явлений, – пишут И. Имянитов и Д. Тихий в книге «За гранью законов науки», посвященной шаровой молнии. – Широко эрудированный физик, он обладал удивительной способностью сопоставлять весьма отдаленные области знания и в то же время легко отвлекаться от досадных мелочей, часто заслоняющих основные черты явления».

    Он считал шаровую молнию вихрем из смеси твердых частиц дыма и пыли с химически активными газообразными продуктами, которые образуются в результате удара обычной молнии. Такой вихрь из раскаленных частиц ярко светится. А циркуляция ионов в нем приводит к возникновению сильного магнитного поля, которое стягивает весь клубок в шар и способствует сохранению его формы. Многочисленные наблюдатели отмечают «любовь» шаровых молний к печным трубам и дымоходам. Есть даже свидетельства появления огненных шаров зимой, во время метелей и снегопадов. Не значит ли это, что для существования шаровой молнии необходимы твердые частицы дыма и сажи, пыли и снежинок? Кроме того, после взрыва – разряда шаровой молнии – в воздухе остается дымок с острым запахом.



    Яков Ильич Френкель (1894–1952)


    Но и по расчетам Френкеля энергоемкость шаровой молнии оказывалась весьма незначительной. Так что, скорее всего, теория, основывающаяся на энергии горения газов, для объяснения природы шаровой молнии не годится. Придется вернуться к гипотезе чисто электрической природы этого явления. И такое предположение рассматривалось учеными.

    В 1960 году появилась статья Е. Хилла, в которой он сравнивал шаровую молнию с миниатюрным грозовым облаком, электрические заряды в котором разделены ударом обычной линейной молнии. В небольшом объеме собираются сгустки электрических зарядов различных знаков. Представим себе шаровую молнию, состоящую, как матрешка, из вложенных друг в друга разноименно заряженных слоев. Получится сферический многослойный конденсатор. Но его энергоемкость тоже оказывается очень незначительной, в тысячу раз меньше даже рассчитанной Френкелем. Между тем по причиненным разрушениям взрыв шаровой молнии приравнивается к взрыву «от сотен граммов до 20 кг тринитротолуола». Это весьма солидный заряд взрывчатки.

    Понятно, что такие свойства шаровой молнии не могли не привлечь к ней внимания тех, кто занят разработкой нового оружия. Еще в декабре 1960 года в американском журнале «Радио. Электроника» появилась статья: «Шаровая молния против ракет». В ней шло популярное объяснение оригинальной гипотезы советского физика Петра Капицы, выдвинутой им в 1955 году. Он писал: «Если в природе не существует источников энергии, еще нам не известных, то на основании закона сохранения энергии приходится принять, что во время свечения к шаровой молнии непрерывно подводится энергия, и мы вынуждены искать этот источник энергии вне объема шаровой молнии».









    Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное

    Все материалы представлены для ознакомления и принадлежат их авторам.