Онлайн библиотека PLAM.RU


  • 35 Змай Йован Йованович
  • 36 Тесла о своих достижениях в различных сферах деятельности
  • 37 Миссия науки
  • 38 Диалог с планетами
  • 39 Редактору «New York Sun»
  • 40 Тесла о нью-йоркской подземке
  • 41 Тесла об экспедиции Пири к Северному полюсу
  • 42 Заметки по поводу французского патента Кабанелласа № 164995
  • 43 Перспективы применения радиосвязи на железных дорогах
  • 44 Возможность использования энергии воды в морских сражениях будущего
  • 45 Будет ли достигнуто полное господство в воздухе?
  • 46 Тесла рассуждает о приоритете США на полюсе Полёт на управляемом аэростате легко осуществим
  • 47 Научные знания и открытия — главные силы, которые приведут к прекращению войны
  • 48 Электричество чудесным образом преобразит мир
  • 49 Грядущая исполинская битва под водой
  • 50 Чудеса будущего
  • 51 Электрический привод для боевых судов
  • 52 Знаменитые научные заблуждения
  • 53 Вращение Луны
  • 54 Резюме о мозге, памяти и мысли
  • 55 Вращение Луны
  • 56 Сигналы к Марсу в надежде, что на планете есть жизнь
  • 57 Разработки в области практического осуществления и режима работы в телефотографировании
  • 58 Как разрушать смерчи
  • 59 Энергия будущего
  • Популярные статьи

    35

    Змай Йован Йованович

    Первый сербский поэт современности

    Едва ли на долю какого-либо народа выпала более горькая судьба, чем судьба сербов. С высоты своего величия, когда могущественная держава занимала почти весь Балканский полуостров и обширную часть территории, относящейся ныне к Австрии, Сербия, после рокового сражения 1389 года на Косовом Поле с несметными азиатскими ордами, оказалась ввергнутой в унизительное рабство. Европа никогда не сможет возместить великий долг сербам, которые, пожертвовав своей свободой, остановили это нашествие варваров. Под Веной поляки во главе с Собеским завершили то, что попытались сделать сербы, и были подобным же образом «вознаграждены» за свое служение цивилизации.

    Именно на Косовом Поле погиб Милош Обилич, благороднейший из героев Сербии, сразивший султана Myрада I в самой гуще его огромной армии. Не будь это историческим фактом, вы были бы склонны посчитать этот эпизод мифом, навеянным соприкосновением с наследием греческого и латинского этносов. Потому что в Милоше мы видим и Леонида и Муция и, более того, великомученика, ибо он погиб не легкой смертью на поле боя, подобно грекам, но заплатил за свой дерзновенный подвиг смертью под страшными пытками. Неудивительно, что эпос народа, способного рождать таких героев, проникнут духом благородства и отваги. Даже неукротимый Кралевич, последнее воплощение героизма сербов, одерживая победу над Мусой, предводителем мусульман, восклицает: «Горе мне, ведь тот, кого я убил, лучше меня!»

    С той роковой битвы и до недавнего времени жизнь сербов была темна, как ночь, с одной лишь звездой на небосводе — Черногорией. В этом мраке не было никакой надежды для науки, торговли, искусства или промышленности. Что могли они сделать, эти храбрые люди? — только продолжать изнурительную борьбу с угнетателями. И они вели ее неустанно, даже если силы были неравны: один против двадцати. И всё-таки эта борьба лишь утоляла их воинственные инстинкты. Но у них была еще одна возможность выжить, и они ее использовали: воплотив в бессмертной песне благородные подвиги своих предков, смелые деяния тех, кто пал в борьбе за свободу. Так обстоятельства и природные качества сделали сербов народом философов и поэтов, и так постепенно создавались их великолепные народные поэтические сказания, которые впервые собрал наиболее плодовитый сербский писатель Вук Стефанович Караджич, составивший, кроме того, первый словарь сербского языка из более чем шестидесяти тысяч слов. Гёте считал, что сербский эпос сравним с лучшими произведениями греков и римлян. Каково было бы его мнение об этом, будь он сербом?

    Наряду с тем, что сербы блистательно проявляют себя в народной поэзии, у них есть также немало оригинальных поэтов, достигших больших высот. Из современных поэтов ни один не стал так дорог молодому поколению, как Змай Йован Йованович. Он родился в городе Нови-Сад, на южной границе с Венгрией, 24 ноября 1833 года и ведет свое происхождение от старинного знатного рода, имеющего общие корни с сербским королевским домом. С самого раннего детства он проявлял большое желание выучить наизусть сербские народные песни, которые ему читали вслух, и, будучи еще ребенком, начал сам сочинять стихи. Отец, в высшей степени культурный и состоятельный дворянин, был его первым воспитателем в родном городе. Затем он отправился в Будапешт, оттуда в Прагу, потом в Вену, в этих городах он окончил курс правоведения. Таково было желание отца, однако его собственные наклонности влекли его к занятиям медициной. Затем Змай вернулся в родной город, где ему было предложено занять видный пост, на что он дал согласие, но его природный поэтический дар имел над ним такую власть, что год спустя он отказался от должности, чтобы всецело посвятить себя литературному труду.

    Его литературная карьера началась в 1849 году, а первое поэтическое произведение было напечатано в 1852 году в журнале «Srbski Letopis» («Servian Annual Review»); в период создания первых произведений он сотрудничал с этим и другими журналами, особенно с «Neven» и «Sedmica». С этого времени и до 1870 года он не только писал стихи, но сделал много прекрасных переводов из Петефи и Арани, двух величайших венгерских поэтов, из русских — Лермонтова, переводил также немецких и других авторов. В 1861 году он начал издавать юмористический журнал «Komarac» («The Mosquito») и в том же году основал литературный журнал «Javor». Для этих зданий он написал много прекрасных стихотворений. В 1861 году женился и в течение нескольких счастливых лет создал замечательный цикл лирических стихов под названием «Guilichi», которые, возможно, являются шедевром его творчества. В 1862 году, к своему великому сожалению, он отказался от дорогого его сердцу журнала «Javor» — жертва, о которой его попросил большой сербский патриот Милетич, — чтобы обеспечить успех политического журнала, изданием которого он занимался в последнее время.

    В 1863 году его избрали директором образовательного учреждения под названием «Tekelianum» в Будапеште. В тот период он с энтузиазмом возобновил занятия медициной в университете и получил степень доктора, не оставляя тем не менее своих литературных занятий. Однако для его соотечественников более значимым, даже по сравнению с его великолепными поэтическими творениями, были его благородные и бескорыстные усилия, направленные на укрепление высоких устремлений сербской молодежи. Во время своего пребывания в Будапеште он основал литературное общество «Preodnica», которое возглавил в качестве президента и которому отдавал большую часть своих сил.

    В 1864 году основал свой знаменитый сатирический журнал «Zmaj» («The Dragon»), который был так популярен, что название стало частью его собственного имени. В 1866 году его комедийная пьеса «Sharan» шла с большим успехом. В 1872 году Йованович пережил огромное горе, потеряв жену, а вскоре после этого и единственного ребенка. Насколько глубоко эти несчастья ранили его, явственно ощущается в очень печальной интонации стихов, которые вскоре появились. В 1873 году он начал издавать другой юмористический журнал «Ziza». В течение 1877 года писал иллюстрированную летопись русско-турецкой войны, а в 1878 году вышел в свет его популярный юмористический журнал «Starmali». Всё это время Змай писал не только стихи, но и много прозы, включая короткие новеллы, иногда под вымышленным именем. Лучшая из новелл, пожалуй, «Vidosava Brankovicheva». В последние годы он опубликовал множество очаровательных стихов для детей.

    С 1870 года Змай постоянно работает врачом. Он является убежденным сторонником кремации и уделяет много времени распространению этого начинания. До последнего времени он был жителем Вены, но теперь постоянно живет в Белграде. Здесь он ведет жизнь истинного поэта, любящего всех и любимого всеми. В признание его заслуг государство постановило выделить ему денежное пособие.

    Стихи Змая, настолько по своему духу сербские, что переводить их на другой язык представляется почти невозможным. Их отличают острая сатира, далекая от вольтерьянского яда, добросердечие и непосредственность юмора, изящество и глубина оборотов речи. Г-н Джонсон взялся сделать стихотворные переводы нескольких коротких творений по моим дословным, но не соблюдающим размер интерпретациям. Зачастую о точном переводе не могло быть и речи, он должен был сделать парафраз, передавая как можно точнее истинный лейтмотив и мысленный образ. В некоторых случаях увеличивал размер, чтобы добиться завершенности картины или чтобы добавить свой собственный штрих.

    «Century Magazine», май, 1894 г.

    36

    Тесла о своих достижениях в различных сферах деятельности

    Редактору «Sun».

    Сэр, если бы не было других неотложных дел, я бы раньше ответил выражением признательности за Вашу чрезвычайно важную редакционную статью в номере за 13 ноября. Такие глубокие комментарии и часто упоминаемые выражения высочайшей оценки моих трудов людьми, признанными лидерами современности в научных гипотезах, открытиях и в изобретательстве, являются мощным стимулом, и я благодарен за них. Ничто иное не придает мне столько сил и мужества, как сознание, что те, кто компетентен давать оценку, верят в меня.

    Разрешите мне, пользуясь случаем, сделать несколько заявлений, которые помогут понять мою точку зрения относительно различных исследовательских направлений, затронутых Вами.

    Я не могу не признать с чувством благодарности, что я обязан предшественникам, таким, как д-р Герц и д-р Лодж, своими успехами в создании практичной и эффективной системы освещения, основанной на принципах, которые я впервые раскрыл в лекции в Колумбийском колледже в 1891 году. Существует распространенная ошибка, что такое освещение может существовать без образования тепловой энергии. Возможно, энтузиазм д-ра Лоджа инициировал эту ошибку, на что я указывал вначале, доказав невозможность получения высоких колебаний, минуя более низкие или основные. Чисто теоретически такой результат возможен, но он предполагает применение устройства для возбуждения колебаний с недостижимыми свойствами, поскольку он должен быть полностью лишен инерции и других существенных характеристик. Хотя у меня есть своя концепция этого вопроса, я на этот раз снимаю утверждение о невозможности. Мы не можем вырабатывать свет без теплоты, но мы, несомненно, можем получать более эффективный свет, чем тот, что дает лампа накаливания, которая, хотя и является замечательным изобретением, испытывает прискорбную нехватку в эффективности. В качестве первого шага в этом направлении я счел необходимым создать какой-нибудь способ для экономичного преобразования обычных токов в электрические колебания огромной частоты. Это была трудная проблема, и лишь недавно я смог объявить о ее практическом и вполне удовлетворительном решении. Но это было не единственное неизбежное условие в системе такого рода. Следовало также повысить интенсивность освещения, которое на первых порах оказалось очень слабым. И в этом направлении я также добился полного успеха, так что в настоящее время получаю вполне пригодное к эксплуатации и экономичное световое излучение любой интенсивности. Не хочу сказать этим, что новая система произведет коренную ломку применяемых ныне систем, которые созданы в результате совместных усилий многих талантливых людей. Я лишь уверен, что она найдет свою область применения.

    Что касается идеи сделать энергию Солнца пригодной для ее использования в промышленности, то она давно вызывала у меня глубокий интерес, но я должен признать, что лишь спустя много времени после сделанного мной открытия вращающегося магнитного поля она прочно завладела моим сознанием. Энергично взявшись за трудную проблему, я нашел два возможных способа ее решения. Или энергия должна браться на месте путем преобразования лучистой энергии Солнца, или накопленную в огромных резервуарах энергию можно без потерь передавать на любое расстояние. Хотя имелись и другие приемлемые источники экономичной энергии, только два упомянутых способа предлагали энергию идеального свойства, получаемую без каких-либо материальных затрат. После долгих размышлений я пришел к двум выводам, но не буду сейчас останавливаться на первом из них, а именно, на производстве энергии от солнечных лучей в каком бы то ни было месте. Таким образом, была создана система беспроводной передачи в том виде, в каком я ее в последнее время описываю. Исходя из двух фактов, говорящих о том, что Земля является проводником, изолированным в пространстве, и что тело не может получить заряд, не вызвав эквивалентной электризации Земли, я взялся за создание машины, обеспечивающей по возможности максимальную электризацию Земли.

    Эта машина просто должна была в быстрой последовательности заряжать и разряжать тело, изолированное в пространстве, периодически изменяя таким образом количество электричества в Земле и, следовательно, напряжение на всей ее поверхности. Это не что иное, как энергетическая модель механического насоса, нагнетающего воду из большого резервуара в малый и обратно. Первоначально я предполагал только передавать таким способом сигналы на большие расстояния и описал в деталях проект, указывая на важность уточнения определенных электрических параметров Земли. Привлекательная особенность этого проекта состояла в том, что интенсивность сигналов почти не ослабевала с увеличением расстояния, практически они вообще не должны были уменьшаться, если бы не определенные помехи, возникавшие главным образом в атмосфере. Как и со всеми моими предыдущими проектами, с этим обошлись так же, как с Марсием, но он тем не менее является основой того, что сейчас известно как беспроволочный телеграф. Это утверждение может показаться безжалостным приговором, но в нем нет намерения умалить заслуги других. Напротив, я с огромным удовольствием отдаю должное первым работам д-ра Лоджа, блестящим экспериментам Маркони и последнему экспериментатору в этом направлении д-ру Слейби из Берлина. И вот эту идею я развил в систему передачи энергии и представил ее Гельмгольцу по случаю его приезда в США. Он, не колеблясь, сказал, что энергию определенно можно передавать таким способом, но выразил сомнение, что я когда-нибудь смогу построить установку, способную доводить напряжение до нескольких миллионов вольт, необходимых, чтобы решение проблемы имело шанс на успех, и что я смогу преодолеть трудности, связанные с изоляцией. С этой нерешаемой проблемой, какой она поначалу казалась мне, к счастью, удалось справиться за сравнительно короткое время, и именно в процессе усовершенствования этой установки я подошел к кульминационному моменту в разработке этого проекта. Дело в том, что я сразу же заметил, что сквозь воздух, который является превосходным изолятором для токов, производимых обычными машинами, легко проходили токи, которые вырабатывала моя усовершенствованная машина, и их напряжение составляло что-то около 2 500 000 вольт. Дальнейшие исследования в этом направлении открыли мне еще одно важное обстоятельство, а именно: проводимость воздуха очень быстро возрастала вместе с ростом разрежения, а следом и передача энергии через верхние слои атмосферы, которое без полученных результатов было бы не чем иным, как мечтой, теперь — легко реализуемой. Это представляется тем более бесспорным, поскольку я убедился, что в тех условиях, которые существуют на изученных высотах, вполне реально передавать электрическую энергию в больших количествах. Таким образом, я преодолел все основные препятствия, которые поначалу стояли на пути, и теперь успех моей системы связан только с инженерным искусством.

    Говоря о своем последнем изобретении, хочу высветить один момент, который не был отмечен. Как уже было сказано, я пришел к этой идее путем исключительно теоретических размышлений о человеческом организме, воспринимаемом мною как самодвижущаяся машина, которой управляют образы, полученные через зрительное восприятие. Пытаясь построить механическую модель, сходную в ее существенных физических свойствах с человеческим телом, вынужден был объединить регулирующее устройство, или орган, воспринимающий определенные волны, с корпусом, снабженным движущим и направляющим механизмами, а всё остальное, как и следовало ожидать, присоединилось потом. Первоначально эта идея интересовала меня только с научной точки зрения, но вскоре я увидел, что пошел в направлении, которое рано или поздно обязательно произведет полное изменение всего окружающего и условий, ныне существующих. И уповаю на то, что это изменение будет только во благо, поскольку в противном случае лучше бы мне этого никогда не изобретать. Будущее, возможно, подтвердит или не подтвердит мои нынешние взгляды, но не могу не сказать, что сейчас мне сложно смотреть на то, как, при наличии такого проекта, доведенного до удивительного совершенства, пушки всё еще применяются в качестве боевого средства. Воспользовавшись этим достижением, мы сможем посылать реактивный снаряд на гораздо большее расстояние, он не будет иметь ограничений по весу или количеству взрывчатого вещества в заряде, мы сможем затоплять его в воде, останавливать его в полете и возвращать, и снова запускать, и взрывать его, когда угодно. Более того, он никогда не промахнется, поскольку исключаются все непредвиденные обстоятельства, если попадание в объект атаки вообще необходимо. Но главную особенность такого оружия следует всё же разъяснить: она состоит в том, что его можно заставить реагировать только на определенную ноту или тембр, он может быть наделен селективной способностью. Как только такое оружие будет создано, едва ли будет возможно противопоставить ему достижение соответствующего уровня. Возможно, именно в этой особенности [оружия] более, чем в его разрушительной силе, заложена тенденция к остановке разработок новых видов вооружений и к прекращению военных действий. Еще раз выражаю благодарность и остаюсь искренне Ваш, Н. Тесла.

    «The New York Sun», 21 ноября 1898 г.

    37

    Миссия науки

    В наше время можно встретить пессимистов, которые с выражением обеспокоенности на лицах постоянно нашептывают вам в ухо, что государства годами тайно вооружаются, вооружаются до зубов, и в какой-то день они планируют обоюдное нападение и уничтожение противной стороны. Люди, ведущие разговоры в таком духе, игнорируют силы, которые всё время трудятся, без лишних слов, но неуклонно стремятся к миру. Происходит пробуждение того свободного, филантропического духа, который, даже в давние времена, озарял светом учения благородных реформаторов и философов, тот дух, который заставляет людей любой профессии и положения работать не столько ради какой-либо материальной выгоды или вознаграждения — хотя рассудок может внушать и это, — сколько, главным образом, ради успеха, ради удовольствия его достижения и ради благ, которые они, возможно, смогут дать своим соотечественникам.

    Сейчас вперед устремляются люди, которые творят чудеса каждый в своей области, чьей главной целью и радостью жизни являются приобретение и распространение знаний, люди, которые намного выше всего земного, люди, на чьем знамени начертано: Всё выше! Вперед и выше!

    Во всех этих проявлениях, придающих возвышенный характер современному интеллектуальному развитию, электричество, развитие науки об электричестве является мощной движущей силой. Наука об электричестве открыла для нас истинную природу света, обеспечила нас бесчисленными бытовыми и точными приборами и в огромной степени прибавила точности нашему знанию. Наука об электричестве показала нам более глубокую связь, существующую между совершенно разными силами и явлениями и, таким образом, подвела нас к полному пониманию вселенной и ее воздействия на наши органы чувств. Главное же в том, что наука об электричестве своей притягательностью, своими перспективами огромных свершений, поразительных возможностей, особенно в гуманистическом аспекте, заручилась энергетической поддержкой творческого работника; ибо где есть такая сфера деятельности, в которой его Богом данные способности принесли бы большую пользу ближним, чем эта неисследованная, почти девственная сфера, где, как в тихом лесу, тысяча голосов отвечает на каждый зов?!

    Тот есть истинный творец, кто вызывает в нас высокие, благородные чувства и заставляет нас ненавидеть раздоры и кровавые побоища. Его личность и…[10], его миссия должны принести пользу человечеству. Вот инженер, который строит мосты через морские заливы и глубокие расщелины и содействует установлению связи и уравниванию неоднородных масс человечества. Вот механик, который приходит со своими время- и энергосберегающими электрическими приборами, который совершенствует свой летательный аппарат не для того, чтобы сбросить пакет динамита на город или судно, но для того, чтобы способствовать развитию транспортных средств и облегчить путешествие. Вот химик, который открывает новые природные богатства и делает бытие более радостным и безопасным; а вот инженер-электрик, который рассылает свои послания о мире по всему земному шару. Не за горами то время, когда люди, которые обращают свои изобретательские способности на создание скорострельных пушек, торпед и других средств разрушения, — при этом всё время уверяя вас, что это на благо человечества, — не найдут покупателей для своих одиозных приспособлений и поймут, что если бы они применили свой изобретательский талант в других областях, то, вероятно, заслужили бы гораздо более высокую награду. Когда это время наступит, повсюду эхом прокатится требование покончить с пережитками варварства, наносящими такой вред прогрессу, дать храброму воину возможность проявить достойную большего одобрения отвагу, чем ту, которую он демонстрирует, когда, опьяненный победой, стремительно бросается на своего собрата, чтобы уничтожить его. Пусть он напряженно трудится день и ночь без особых надежд на успех, оставаясь тем не менее непоколебимо стойким, пусть он бросит вызов рискованным исследованиям атмосферных высот и морских глубин; пусть он мужественно переносит беды, зной тропических пустынь и лед полярных территорий. Пусть он обратит свои усилия на отражение грозящих всему сообществу опасностей и врагов-паразитов, находящихся вокруг нас повсюду: в воздухе, которым мы дышим, в воде, которую мы пьем, и в пище, которую мы потребляем. Это действительно странно, что мы, существа, достигшие высшего уровня развития в этом уникальном мире, существа с такими беспредельными способностями к мышлению и действию, находимся во власти невидимых враждебных нам сил, что нам не должно знать, доставит ли нам глоток пищи и питья удовольствие и продление жизни или принесет страдание и приблизит гибель. С этими врагами следует вести боевые действия современными способами во главе с бактериологом и вооружившись электричеством, оказывающим чрезвычайно полезную помощь.

    Мы все радуемся, отмечая быстрый прогресс, достигнутый за последние годы электротехнической наукой, особенно в Америке. Белл, благодаря своему выдающемуся изобретению, давший нам возможность передавать речь на большие расстояния, глубоко повлиял на наши торговые и общественные отношения и даже на наш образ жизни; Эдисон, даже если бы он не создал ничего более, кроме одной из своих первых работ — системы освещения лампами накаливания, был бы одним из величайших благодетелей эпохи; Вестингауз, инициатор создания рентабельной установки переменного тока; Браш, замечательный первопроходец освещения дуговыми лампами; Томсон, который дал нам первую действующую сварочную машину и, обладая проницательным умом, внес существенный вклад в развитие ряда научных и промышленных отраслей; Уэстон, опередивший весь мир в создании динамо-машин, сейчас занимает передовые позиции в конструировании электрических приборов; Спрейг, который деятельно справился с проблемами и обеспечил успех практической электрификации железных дорог; Ачесон, Холл, Уилсон и другие, совершившие переворот в промышленности. Эти одаренные люди не завершили свою работу. Они, а также многие другие, неустанно трудятся, исследуя новые области и открывая нам непредвиденные и многообещающие сферы деятельности. Еженедельно, если не ежедневно, мы узнаём о новом продвижении вперед в какой-либо неисследованной области, где успех дружески манит к себе на каждом шагу и влечет труженика ко всё более трудным задачам.

    Но среди всего множества быстро развивающихся исследовательских областей, отраслей промышленности, новых и старых, есть одна, доминирующая над всеми остальными по важности, — одна, которая имеет величайшее значение для благополучия и благосостояния, если не сказать существования, человечества. Это — передача электрической энергии. Не имеет значения, что мы пытаемся сделать, не имеет значения, в какую область мы направляем свои усилия, мы живем за счет энергии. Наши экономисты могут предлагать более экономичные системы управления и использования ресурсов, наши законодатели могут создавать более мудрые законы и договоры, но такая помощь может быть только временной. Если мы хотим избавиться от бедности и страданий, если мы хотим дать каждому достойному индивидууму всё, что необходимо для безопасной и комфортной жизни, дать всем, за исключением, пожалуй, добровольных бездельников, нам потребуется больше механизмов, больше энергии. Энергия — наша главная опора, первоисточник нашей многогранной активности. Имея в своем распоряжении достаточное количество энергии, мы можем удовлетворить большую часть своих потребностей. Развитие и благосостояние города, процветание нации, прогресс всей человеческой расы регулируются доступной нам энергией.

    Взгляните на победный марш британцев, подобного которому никогда не было отмечено в истории. Помимо характерных особенностей своей расы, господством над миром они обязаны углю. Ибо, имея уголь, они сами производят железо; уголь обеспечивает их светом и теплом; уголь приводит в движение механизмы их огромных промышленных предприятий; уголь же гонит их флот на дальнейшие завоевания. Но запасы всё более и более истощаются, угледобыча становится всё дороже, а потребность в нем постоянно возрастает. Каждому должно быть ясно, что в скором времени понадобятся новые источники энергоснабжения, или существующие способы нужно существенно улучшить. Многое ожидается от более экономичного использования накопленной в аккумуляторе энергии углерода, но в то время достижение этого результата будет превозноситься как великое свершение, оно же не составит значительного прорыва вперед к основному и долговременному способу получения энергии, на что надеются некоторые инженеры. По причинам и экономии, и удобства применения мы склоняемся к повсеместному принятию системы энергоснабжения от центральных станций, при осуществлении этого замысла преимущества механического производства электричества путем использования энергии воды не могут быть переоценены.

    Мы не можем довольствоваться усовершенствованием паровых двигателей или изобретением новых аккумуляторов, но должны изыскивать возможности получения энергии из неисчерпаемых запасов, разрабатывать методы, которые не предполагают расходование и потери какого-либо вещества. На этой благородной перспективе, уже давно мной осознанной, я сосредоточил свои усилия и работаю в течение ряда лет, а несколько удачных идей, посетивших меня, явились стимулом в решении самых трудных задач. Я добился успехов и миновал уже стадию простой уверенности, какая вытекает из кропотливого изучения известных фактов, выводов, расчетов. Основываясь на уверенности, что до реализации моей идеи осталось ждать немного, считаю необходимым указать на важное обстоятельство. Изучая в течение долгого времени возможные пути развития, в частности, возможность работы двигателей в любой точке Земли на энергии окружающей среды, я нахожу, что даже при теоретически идеальных условиях такой способ получения энергии не может сравниться по экономичности, простоте с методом, предполагающим превращение механической энергии проточной воды в электрическую и передачу последней в виде токов очень высокого напряжения на большие расстояния. Следовательно, при условии, что мы сможем работать с токами достаточно высокого напряжения, использование энергии воды даст нам наиболее выгодное средство получения энергии от Солнца, достаточной для наших потребностей. Успехи в этой области дали мне надежду, что я увижу осуществление заветного чаяния — передачу энергии от станции до станции без применения каких бы то ни было соединительных проводов. Когда эта мечта осуществится, появится гарантия безопасной и удобной жизни для всех, за исключением самых отъявленных преступников — бездельников по собственному выбору, а не в силу обстоятельств.

    «Free Press Detroit», 2 сентября 1900 г.

    38

    Диалог с планетами

    Поразительное сообщение, сделанное недавно Николой Теслой о том, что он получил послание из глубин межзвездного пространства, сигнал от обитателей Марса или Венеры, или другой, родственной им планеты, было поначалу воспринято изумленным человечеством с большим недоверием, но в среде видных ученых, в числе которых сэр Джозеф Норман Локьер, всё большую поддержку находит мнение, что выводы г-на Теслы верны. Этой публикацией г-н Тесла впервые формулирует то, что он рассчитывает довести до конца и установить, таким образом, связь с планетами.

    В этот рассудочный век неудивительно встретить людей, которые поднимают на смех одну лишь мысль об осуществлении связи с какой-либо планетой. Прежде всего приводится аргумент о чрезвычайно малой вероятности того, что другие планеты вообще обитаемы. Этот довод никогда не вызывал во мне интереса. В Солнечной системе есть, по-видимому, только две планеты — Венера и Марс, способные поддерживать жизнь, подобную нашей; но это не означает, что на всех этих планетах не могут существовать какие-либо другие формы жизни. Химические процессы могут протекать и без участия кислорода, и это еще вопрос, являются ли химические процессы безусловно необходимыми для обеспечения жизни организованных существ. Я представляю себе эволюцию жизни в таких ее формах, которые могут существовать без питания и которые не скованы логически вытекающими отсюда ограничениями. Разве не может живое существо получать всю энергию, необходимую для осуществления своих жизненных функций, из окружающей среды, а не посредством потребления пищи и превращения энергии химических соединений в энергию жизнеобеспечения?

    И всё-таки жизнь, по-видимому, существует.

    Если бы такие существа и находились на одной из планет, нам почти ничего не было бы о них известно. Нет необходимости заходить так далеко в своих предположениях, поскольку мы легко можем представить себе, что в той же мере, в какой уменьшается плотность атмосферы, уменьшается влажность, и планета замерзает; органическая жизнь также может подвергнуться соответствующим изменениям, приходя в конце концов к формам, которые, в соответствии с нашими нынешними представлениями о жизни, невозможны. Я, конечно, готов допустить, что в случае внезапной катастрофы любого рода все жизненные процессы могут остановиться; но если бы изменения, какими бы глубокими они ни были, происходили постепенно и растягивались на целую эпоху так, чтобы можно было предвидеть окончательные результаты, я не могу не думать о том, что мыслящие существа всё же нашли бы способы существования.

    Далее они заявляют, что передача сигналов на почти непостижимое расстояние 50 000 000 или 100 000 000 миль находится за пределами человеческих возможностей и способностей. Некогда это могло бы быть веским аргументом. Теперь это не так. Большинство из тех, кто увлечен вопросом межпланетных сообщений, возлагают надежды на световой луч как на лучшее из возможных средств связи. Действительно, световые волны благодаря их огромной скорости могут пронизывать пространство с большей легкостью, чем менее быстрые волны, но несложный анализ доказывает, что с их помощью обмен сигналами между нашей планетой и ее компаньонами по Солнечной системе, по крайней мере сейчас, невозможен. В качестве иллюстрации предположим, что квадратная миля поверхности Земли — наименьшая площадь, которая, вероятно, может быть в пределах досягаемости лучшей телескопической системы технического обозрения других миров — была бы так плотно заполнена лампами накаливания, чтобы создать, при включенных лампах, сплошной поток света. Потребовалось бы не менее 1 000 000 000 лошадиных сил для освещения этой площади с лампами, а это во много раз превышает количество вырабатываемой энергии, которой человечество во всем мире располагает сейчас.

    Малая потребная мощность

    Однако воспользовавшись новейшими средствами, предложенными мной, готов наглядно продемонстрировать, что при затратах энергии, не превышающих 2 000 лошадиных сил, возможно передавать сигналы на планету, например, на Марс, так же точно и уверенно, как мы сейчас посылаем сообщения по телеграфу из Нью-Йорка в Филадельфию. Эти средства — результат длительного непрерывного экспериментирования и последовательного усовершенствования.

    Приблизительно лет 10 тому назад я пришел к выводу, что для передачи электрических токов на расстояние совсем не обязательно применять обратный провод, а любое количество энергии можно передать, пользуясь одним проводом. И проиллюстрировал этот принцип на многочисленных опытах, которые в то время привлекли к себе внимание в научной среде.

    Доказав это на практике, на следующем этапе решил использовать саму Землю в качестве токопроводящей среды, обходясь, таким образом, без проводов и всех иных искусственных проводников. Так я пришел к созданию системы передачи энергии и беспроводного телеграфа, описание которых представил в 1893 году. Трудности, с которыми поначалу столкнулся, экспериментируя с передачей энергии через Землю, были весьма велики. В то время я располагал только обычными приборами, которые счел неэффективными, и немедленно сосредоточил свое внимание на доработке оборудования, специально предназначенного для этой цели. Эта работа продолжалась несколько лет, но в конце концов я преодолел все трудности и достиг цели, создав установку, которая, если объяснять принцип ее работы простым языком, напоминала откачивающую помпу, вытягивающую электричество из Земли и посылающую его обратно в Землю с такой огромной скоростью, что это вызывало пульсации и возмущения, которые, распространяясь по Земле, как по проводам, регистрировались на больших расстояниях точно настроенными принимающими контурами. Применяя такой способ, я смог передавать на расстояние не только слабые импульсы для установления связи, но и значительные количества энергии, а дальнейшие, сделанные мной открытия убедили меня в том, что, в конечном итоге, мне удастся перемещать энергию без проводов для промышленных целей с высокой экономичностью на любые, сколь угодно большие расстояния.

    Эксперименты в Колорадо

    Для осуществления дальнейших замыслов в 1899 году я уехал в Колорадо, где продолжил исследования в этом и других направлениях, одно из которых, в частности, теперь нахожу даже более важным, чем беспроводная передача энергии. Я построил лабораторию в окрестностях Пайкс-Пик. Чистый воздух в горах Колорадо создавал условия, чрезвычайно благоприятные для моих экспериментов, и результаты доставляли мне большую радость. Я не только оказался в состоянии выполнять больше работы — физической и умственной, чем в Нью-Йорке, но также убедился в том, что электрические эффекты и изменения воспринимались гораздо быстрее и явственнее. Несколько лет тому назад было практически невозможно производить электрические искровые разряды длиной 20 или 30 футов, а я получил разряды, длина которых превышала 100 футов, и при этом без затруднений. До этого величина передаваемого электричества посредством мощной индукционной машины достигала лишь нескольких сотен лошадиных сил, а я осуществил перемещение электричества мощностью 110 000 лошадиных сил. Моими предшественниками были получены лишь незначительные электродвижущие силы, тогда как я добился напряжения 50 000 000 вольт.

    Многие представители сферы деятельности, к которой принадлежу и я, удивляются и задаются вопросом о цели моих усилий. Но уже недалеко то время, когда миру будут предъявлены практические результаты моих трудов, и их влияние станет ощущаться повсюду. Одним из них будет передача сообщений без проводов через море и сушу на огромные расстояния. Я уже доказал, что это легко осуществимо.

    Занимаясь доводкой машины, предназначенной для генерирования мощных электрических возмущений, я в то же время разрабатывал способ изучения ничтожно малых импульсов. Наиболее интересный результат, имеющий к тому же огромное практическое значение, — разработка специальных устройств для обнаружения на расстоянии многих сотен миль приближающегося шторма, его направление, скорость и пройденное расстояние. Эти приборы будут, вероятно, чрезвычайно полезны в будущем для метеорологических наблюдений. Именно в процессе работы над ними я впервые обнаружил те загадочные явления, которые вызвали такой исключительный интерес. И завершил работу над устройством до такой степени чувствительным, что, находясь в своей лаборатории в горах Колорадо, мог воспринимать своего рода импульсы земного шара, отмечая все электрические изменения, происходившие в радиусе 1 100 миль.

    Потрясение от достигнутого успеха

    Никогда не смогу забыть первые ощущения, которые испытал, когда до моего сознания дошло, что я наблюдал нечто, возможно, имеющее непредсказуемые последствия для человечества. И ощутил себя присутствующим при рождении нового знания или при откровении великой истины. Даже теперь я временами переживаю состояние потрясения и вижу свой прибор воочию, как если бы он действительно был передо мной. Мои первые результаты наблюдений, несомненно, вселили в меня ужас, так как в них присутствовал элемент сверхъестественного, и я был один в лаборатории ночью, но в то время у меня не возникло мысли о том, что эти возмущения были разумно управляемыми сигналами.

    Установление связи с Марсом

    На современном уровне развития не будет непреодолимых препятствий для создания машины, способной передать сообщение на Марс, не возникнет и больших трудностей в фиксировании сигналов, переданных нам обитателями этой планеты, если они окажутся квалифицированными электротехниками. Если связь будет когда-нибудь установлена, пусть даже в самой примитивной форме, например, просто в виде последовательного ряда чисел, прогресс в области коммуникации, наполненной большим смыслом, будет стремительным. Абсолютная уверенность в получении и взаимном обмене сообщениями будет достигнута, как только мы сможем отреагировать числом «четыре», отвечая на сигнал «один, два, три». Если бы марсиане или обитатели любой другой планеты послали нам сообщение, они сразу бы поняли, что мы получили их послание сквозь бездну пространства и отправили ответ. Передавать знания таким способом хотя и весьма трудно, но всё же возможно.

    «Collier's Weekly», февраль, 1901 г.

    39

    Редактору «New York Sun»

    Сэр, вызывает сожаление тот факт, что приходится предавать гласности заявления, дискредитирующие Патентное бюро, тем более что едва ли есть другой институт, который делает так много для упрочения достойной репутации Соединённых Штатов. С учетом огромного объема и исключительно тонкого характера работы этого учреждения, отношение к нему со стороны официальных лиц вызывает, по правде говоря, удивление. На многолетнем личном опыте я убедился в том, что экспертизы носят гораздо более приятный характер по сравнению с моими представлениями о процессе. Во многих случаях с удивлением отмечал глубокое понимание идеи, точность критических замечаний и основательность анализа возможных слабых мест и неизменно черпал полезные сведения из приводимых заключений и предлагаемых рекомендаций.

    Роль Патентного бюро настолько жизненно важна для интересов США, что любое высказывание, допускающее возможность посеять сомнение в сознании людей относительно добросовестного выполнения обязанностей и компетентности его сотрудников, должно считаться неуместным. Почти все прикладные науки, отрасли промышленности и предприятия в той или иной степени защищены патентным правом, и если создавать почву для мнения, что люди, призванные принимать важные решения, некомпетентны, и что ответственным членом комиссии может оказаться хан, или могол, или Pooh Bah [персонаж комической оперы Гилберта «Микадо», пытающийся произвести впечатление влиятельного человека], занимающий этот пост для удовлетворения своих прихотей, вера сообщества в справедливую оценку прав собственности может быть разрушена.

    В сущности, несмотря на то что в действительности эксперты никогда не смогут во всём идти в ногу с изобретателями, они являются людьми хорошо образованными и подготовленными. В дополнение к имеющимся у них необходимым специальным знаниям они должны выдержать экзамен по физике, химии, количественному и качественному анализу, математике, включая исчисление, техническому черчению и иностранным языкам. Такие люди, несомненно, должны обладать способностью понимать замысел и со знанием дела высказывать суждение по поводу основных достоинств документально обоснованных свидетельств, представленных на рассмотрение. Тогда вряд ли возникнет серьезное недовольство из-за недостаточных познаний эксперта или отсутствия понимания. Не должно быть конфликтов и по причине несовершенства сложившейся процедуры, хотя некоторые моменты можно и устранить для пользы дела. Например, предложение патентной формулы экспертом в случае, когда в заявке имеются противоречия, всегда [должно быть], по моему мнению, в пользу изобретателя, который обладает более обширными знаниями и более богатым воображением. Введение большей строгости в оформлении отзыва и исправлении технических условий было бы также полезно. Но в конце концов, имеет ли значение, в каком виде представлены подлинные документы? Все последующие изменения подлежат регистрации, и их можно проверить в любое время. Если в поправку вносится новая деталь, этого не следует допускать, а свидетельские показания в качестве доказательства в установлении приоритета при одновременном поступлении заявок выявят истинные факты, которые и решат этот вопрос. Преимущества, которые могут дать эти или подобные изменения, будут незначительными. Но серьезных улучшений можно добиться в другой области.

    В последние годы потребность в некоторых департаментах возрастает так быстро, что следовало бы ускорить рассмотрение [поступающих изобретений], а это, естественно, снизит качество работы. Однако есть средство, отличающееся простотой, и его следует применить немедленно. Патентное бюро нуждается в одном — достаточном ассигновании.

    Важнейшей проблемой, стоящей перед человечеством, является создание способов и средств защиты интеллектуальной собственности. Конечной целью должно стать принятие законов и обязательных постановлений столь же четких, как и те, что определяют право собственности на материальные ценности. В этом деле должен быть найден принципиально новый подход. Возможно, в отдаленном будущем фоторегистрограмма сетчатки глаза создаст основу более совершенной системы защиты и непосредственной оценки произведений как результатов мыслительной деятельности. Насколько я способен представить себе функционирование человеческого аппарата, такие записи представляют единственную возможность покончить с нынешними несовершенными взглядами на собственность и избавиться от использования незрелых моделей. Однако будем помнить, что на данный момент Патентное бюро Соединённых Штатов достигло немалых успехов на пути к этой цели. Рассматривая деятельность этого учреждения в общем плане, мы должны дать истинную оценку его огромному влиянию на благосостояние и нравы населения. Учреждение такого значения следует обеспечивать со всей щедростью. В настоящее время это отнюдь не факт. Все департаменты находятся в предельно стесненных условиях, а оклады служащих постыдно малы. Эксперту в должности четвертого помощника положено начальное жалованье 1 200 долларов в год, и он может дослужиться до должности первого помощника с жалованьем 1 800 долларов. Старший эксперт, решения которого могут иметь далеко идущие последствия, получает ханжеский оклад — 2 500 долларов в год. К тому времени, когда он добьется высокого положения, поймет, что может зарабатывать в другом месте в четыре раза больше, и подаст заявление об отказе от должности. Из официальных ответов я делаю вывод, что в 16-м отделе не менее четырех старших экспертов — Биссинг, Райс, Уинтер и Дин — оставили свой пост менее чем за шесть лет. Это была большая потеря для Патентного бюро. Ничто иное, кроме щедрых ассигнований, не сможет справиться с этим бедствием. Я полагаю, оклады экспертов следует, по крайней мере, удвоить, а количество служащих увеличить, с тем чтобы стимулировать талантливых людей оставаться в бюро и позволить специалистам работать по найму. Следует возвести внушительного вида здание, которое будет располагать достаточным количеством помещений с хорошим освещением и вентиляцией, оснащенных самым совершенным оборудованием для записи и экспериментальных демонстраций идей. Для такого дела никакие затраты не могут быть слишком большими. В то время, когда наше правительство позволяет себе тратить миллионы на то, что всего лишь через несколько лет неизбежно обратится в металлолом и будет утрачено для человечества, один из крупнейших институтов, которым и сейчас Соединённые Штаты имеют все основания гордиться, не должен остаться забытым.

    Искренне Ваш, Никола Тесла

    «New York Sun», 18 мая 1904 г.

    40

    Тесла о нью-йоркской подземке

    Мое внимание привлекли многочисленные комментарии на письмо, опубликованное в вашем выпуске за 1 ноября, относительно электрооборудования недавно открытой нью-йоркской подземки. Некоторые из них основаны на ложных предположениях, на которые считаю своим долгом указать.

    Когда я заявлял о признании моей системы, это не означало, что я создал все электрические приборы для метрополитена. К примеру, прибор, ремонтом которого через два дня после того, как тоннель приготовили для общественного пользования, занимался несчастный погибший электромонтер, не являлся моим изобретением. Не был таковым и другой прибор, установленный на вагоне, стоявшем на запасном пути, и который, как известно, стал причиной ожогов двух человек. Я также должен опровергнуть какое-либо свое отношение к переключателю, или приспособлению, вызвавшему моментальную и безвременную гибель одного человека, а также к прибору, который оборвал жизнь другого несчастного. Я категорически утверждаю, что не создавал ни одного из этих печально известных устройств или любых других, приведших к конфликтным ситуациям и различным авариям, по причине которых несколько человек стали их жертвами. Да и нет, по моему мнению, неизбежной необходимости во всех этих приборах, будь со знанием дела спроектирована система тяги для вагонов. В связи с этими устройствами показательно появление в некоторых газетах за 8 ноября сообщения о том, что одна небольшая фирма обанкротилась, потому что стоимость подрядных работ была слишком низкой. Это свидетельствует о жестокой конкуренции и резком снижении цен, но не выглядит проявлением необыкновенной щедрости, якобы проявленной компанией «Интербург».

    В своем письме хотел бы подчеркнуть, что в подземном и надземном метрополитене воспользовались моим методом передачи энергии с помощью трехфазных генераторов и синхронных преобразователей. Я специально разработал его много лет назад с целью удовлетворить разнообразные запросы, связанные с повсеместным распространением электрического освещения и энергоснабжения. Он широко внедряется во всем мире благодаря своей простоте и доступности и получает повсеместно высокую оценку. Но идея применения этой гибкой системы на главной транспортной артерии огромного города в условиях, когда предъявляются такие жесткие требования, сулит многочисленные непредвиденные аварии, несчастные случаи, причинение вреда здоровью людей и ущерба имуществу и потому представляется абсурдной, чтобы считать ее заслуживающей какой-либо серьезной критики. Здесь следовало бы смонтировать мою многофазную установку с асинхронными двигателями и закрытыми обмотками якоря — устройство, надежное в работе и минимизирующее опасность поездки. Ничто, даже невежество, не может препятствовать окончательному выбору в ее пользу, и чем скорее произойдет замена, тем лучше будет для всех заинтересованных лиц. Я сам не имею никакого финансового или иного интереса в этом деле, за исключением того, что, будучи в течение долгого времени жителем Нью-Йорка, был бы счастлив увидеть свои изобретения служащими должным образом в интересах общества. В данных обстоятельствах я должен отказаться от этого удовольствия.

    Последствия непростительной ошибки компании «Интербург» не ограничиваются подземным метрополитеном или даже Нью-Йорком. Надземный метрополитен — это восьмое чудо света, такое же исполинское и испытывающее выдержку граждан своими размерами, как пирамида Хеопса. Рано или поздно, все железные дороги, связывающие города, должны стать подземными. Мы вынуждены перемещаться под землей. Потребуются огромные капиталовложения, а применение электрических приборов с изъяном принесет неизмеримый ущерб людям и имуществу, не говоря уже о неудобствах эксплуатации.

    С моей стороны будет, по-видимому, уместно ответить в этой связи на выстраданные советы некоторых моих доброжелателей, большей частью незнакомых мне, касающиеся и широкого спектра достижений в области электричества, и узкого круга моих друзей, и поэтому придется еще раз обратиться к Американской ассоциации электротехников. Среди людей науки принято лишь один раз высказывать собственное мнение по конкретному вопросу. Я сделал это и не испытываю желания отступать от существующего порядка вещей. Лекция о несовершенствах в метрополитене могла бы предоставить массу возможностей, но не была бы оригинальной. В связи с известными инсинуациями позволю себе процитировать недавно опубликованное высказывание К.-Ф. Скотта, бывшего президента Американской ассоциации электротехников: «В историческом плане именно принципиальный подход Теслы и метод Теслы стали решающей движущей силой в практическом применении современной электротехники». Есть лишь несколько человек, чье признание моих трудов я мог бы процитировать. Г-н Скотт один из них, чье сотрудничество в осуществлении великой промышленной революции посредством этих изобретений было в высшей степени квалифицированным. Но советы моих добрых друзей упали на благодатную почву, и имея возможность найти время и силы, я мог бы запросить у городских властей полномочий для проведения исследований метрополитена и сделать в интересах общественного благополучия клятвенно заверенное сообщение обо всех изъянах и недостатках, которые сумел бы обнаружить.

    Еще несколько слов в отношении указателей. Относясь с должным уважением к общественному мнению, я придерживаюсь всё же совершенно другого в этом вопросе. Реклама — прикладное искусство, которое непрерывно повышает свой уровень и вскоре будет вполне приемлемым. Она должна не препятствовать, а скорее подталкивать. Я мог бы предоставить компании «Интербург» любой вид оборудования для его эксплуатации, за исключением того, что касается художественного исполнения. Следует, вероятно, создать комиссию из толковых людей, включая художника, скульптора, архитектора, литератора, инженера и административного управляющего, для вынесения решения о достоинствах указателей, представленных на рассмотрение и утверждение. Я не вижу оснований для общественного недовольства, если они будут выверены таким образом. Они будут способствовать деловой активности, сделают поездку менее утомительной и помогут многим квалифицированным работникам. Метрополитен непременно должен быть в муниципальной собственности, и тогда город будет получать от него доход. Самые насущные вопросы, связанные с сохранностью жизни и имущества, скоростью и безопасностью поездки, следует рассматривать в первую очередь. Всё это зависит от электрического оборудования. Инженеры построили хороший туннель, и чтобы соответствовать ему, следует смонтировать соответствующую аппаратуру.

    «Electrical World», 3 декабря 1904 г.

    41

    Тесла об экспедиции Пири к Северному полюсу

    «New York Sun» за 16 июля опубликовала нижеследующее письмо г-на Николы Теслы.

    Всех, по всей видимости, осчастливило известие о том, что капитан 1-го ранга Пири добился наконец финансовой помощи, которая даст ему возможность без дальнейших проволочек начать свое имеющее большое значение путешествие. Давайте пожелаем отважному навигатору полного успеха в его рискованном походе, предпринимаемом ради интересов человечества, своих собственных и интересов своих спутников, а также ради возможности доставить удовольствие щедрым спонсорам, оказавшим ему поддержку. Однако же, выражая эти эмоции, будем надеяться, что попытка Пири достичь полюса таким медленным, затруднительным и рискованным способом будет последней.

    Мы уже накопили достаточно знаний об электричестве и о его использовании, чтобы обеспечить себе более удобное средство передвижения, позволяющее достичь и исследовать без труда и более совершенным методом не только Северный, но и Южный полюс, а также и любые другие, еще не изученные регионы земной поверхности. Я имею в виду возможности, которые предоставляют беспроводная передача электрической энергии и аэронавигация, обретшая в этом новейшем деле свое идеальное применение.

    Нет сомнений, что у многих из числа ваших читателей может сложиться впечатление, что я говорю исключительно о перспективах. Собственно говоря, проведенные мной эксперименты доказали не только успешность применения их на практике для доставки таким способом энергии, количество которой приводится к степени математической уверенности, но и тот факт, что ее передача может осуществляться с гораздо меньшими потерями, чем это происходит сегодня при использовании проводного способа.

    Строительство станции для аэронавигации и географических исследований не займет много времени, и стоить она будет не так много, как может показаться. Ее местонахождение не будет иметь совершенно никакого значения. Она может располагаться на Ниагарском водопаде или на водопаде Виктория в Африке без какой-либо существенной разницы в количестве энергии, накопившейся в летательном аппарате или другом устройстве.

    Распространенным заблуждением, которое я много раз имел возможность опровергать, является утверждение, что энергия такой станции будет рассеиваться во всех направлениях. Это не так, на что я уже указывал в специальных публикациях. Электричество перемещается благодаря передатчику во всех направлениях, в равной степени через землю и воздух, но расходуется энергия только в том месте, где она накапливается и используется для выполнения какой-либо работы. Для иллюстрации: пусть станция мощностью 10 000 л.с., такая, как я планирую, работает на полную мощность на Ниагаре, и пусть будет задействована всего лишь одна летательная машина мощностью, скажем, 50 л.с. в каком-либо отдаленном месте, при этом ее точное местоположение не имеет абсолютно никакого значения. В таком случае вся энергия, отдаваемая станцией всему остальному миру, составит 50 л.с. Несмотря на то что электрические колебания будут проявляться по всей Земле, как на поверхности, так и высоко в атмосфере, практически энергия не будет расходоваться. Мои эксперименты доказали, что электрическое воздействие, приводящее к вибрациям всего земного шара, может состоять из нескольких лошадиных сил. Единственной потерей, не считая того, что энергия расходуется в передающем и принимающем устройстве, будет энергия, излучаемая в виде герцовых, или электромагнитных, волн, которую можно уменьшить до совершенно незначительной величины.

    Я понимаю те трудности, которые приходится испытывать вашим читателям, не имеющим инженерно-технических познаний и пытающимся понять, как работает эта система. Чтобы получить приблизительное представление, пусть они представят себе передатчик и Землю в виде двух эластичных резервуаров, один из которых очень маленький, а другой огромный, при этом оба резервуара соединены трубой и наполнены некой несжимаемой жидкостью. Для нагнетания жидкости из одного резервуара в другой попеременно и с быстрой сменой направления предусмотрен насос. Так вот, чтобы произвести могучее перемещение жидкости в резервуар такой огромной величины, как Земля, потребуется такой большой насос, что построить его будет более трудной задачей, чем соорудить тысячу египетских пирамид. Но есть способ добиться этого с помощью насоса очень небольших размеров. Большой резервуар пронизан колебаниями, явлением удивительным. Но пока еще не происходит перемещения энергии, для поддержания всего этого колоссального движения требуется мало энергии — как это бывает с двигателем, работающим без нагрузки.

    Затем пусть ваши читатели представят себе, что в любом месте, куда потребуется доставить энергию, имеется небольшой эластичный резервуар, такой же, как в первом примере, соединенный с большим через трубу. Третье искусное изобретение заключается в настолько выверенных размерах частей, что присоединение отреагирует на переданные импульсы, и это приведет к значительному усилению вибрации резервуара. Однако насос не будет поставлять энергию, пока эти вибрации не произведут какую-либо работу.

    Для облегчения понимания четвертой находки, то есть «индивидуализации», пусть ваши читатели сделают еще один шаг вместе со мной и поймут, что потоком энергии, направляемым к какой-либо точке, можно управлять по усмотрению с того места, где смонтирован насос, с той же легкостью, невзирая на расстояние, и более того, с помощью устройства так же, как с помощью секретного замка сейфа, они получат приблизительное представление о происходящих процессах. Но только когда они осознают, что все эти процессы и многие другие, не упомянутые здесь, связанные один с другим, подобно звеньям цепи, происходят в долю секунды, тогда ваши читатели смогут оценить магический потенциал электрических колебаний и составить представление о чудесах, которые искусный инженер-электрик сможет совершать, применяя эти устройства.

    Я искренне надеюсь, что в ближайшем будущем сложатся благоприятные условия для строительства предложенной мной установки. Как только это будет сделано, откроется возможность применить двигатели в летательных машинах такого типа, популяризацией которого занимается Сантос Дюмон. Отпадет необходимость возить генератор или запасы кинетической энергии, следовательно, машина будет значительно легче и меньше. Благодаря этому, а также большему количеству энергии, используемой двигателем, скорость значительно возрастет. Всего нескольких таких машин, должным образом оснащенных фотографическим и другим оборудованием, будет достаточно, чтобы за короткое время дать нам точную информацию обо всей поверхности Земли. Однако следует иметь в виду, что для повседневного пользования отдельным человеком будет вполне достаточно очень небольшой машины мощностью не более одной четверти лошадиной силы, что соответствует работе, совершаемой двумя людьми, так что когда будет смонтирована первая станция мощностью 10 000 л.с., воздушные полеты как услугу массового спроса можно будет предлагать огромному количеству лиц во всем мире. По моему мнению, не существует лучшего средства, которое обеспечивало бы бoльшую пользу цивилизации, чем это.

    «Electrical World and Engineer», 22 июля 1905 г.

    42

    Заметки по поводу французского патента Кабанелласа № 164995

    Время от времени Великий дух изобретательства нисходит на Землю, чтобы раскрыть тайну, которой предназначено способствовать прогрессу человечества. Он тщательно отбирает самого достойного и нашептывает ему на ухо эту тайну. Подобно яркому свету вспыхивает драгоценное знание. Когда счастливчик постигает тайный смысл услышанного, он видит чудесную перемену: его восхищенному взору открывается новый мир. Он с трудом находит сходство со старым. Это не преходящее видение, не игра его живого воображения, не фантом или пелена перед глазами, которая может растаять. Чудные картины, которые он видит, пусть пока еще не четкие, существуют. Он знает это, в его сознании нет и тени сомнения, каждой клеточкой своего тела он ощущает: это — Великая Истина!

    С этого времени идея витает в воздухе. Он шепотом сообщает ее другу, этот друг — своему другу, тот еще одному — так передается удивительное слово, которое никто, кроме него, не может понять. Слух разрастается, слух путешествует верхом на лошади, в почтовой карете, на поезде и пароходе, по телеграфу и телефону — неясный, непостижимый шепот на неизвестном языке постепенно овладевает земным шаром. Он слишком слаб, чтобы быть услышанным, слишком необычен, чтобы быть понятым: люди, как и прежде, заняты своими делами. Но вот в каком-то уголке мира обнаруживается человек с поразительно тонким чувственным восприятием и интуитивным мышлением; природа подготовила его к высокому призванию; если бы не было того, другого, избранного, Великий дух сообщил бы тайну ему. Шепот доходит до него — его охватывает необъяснимое волнение. Он и до этого упорно работал, но теперь он не знает отдыха.

    День за днем он размышляет над проблемой, из ночи в ночь он мечется в постели без сна, идеи одна за другой проносятся в его голове. Всё более и более нарастает таинственное воздействие — необычное восторженное состояние — наивысшее напряжение, наступает этот великий миг, его слух предельно обострен, чувствительность его ментального тела возрастает — и вот, каким бы неясным ни было слово, его чудесное ухо уловило его; каким бы странным оно ни было, его тонкое сознание проникло в его смысл. Эврика! Нашел! — восклицает он. Увы, слишком поздно. Ибо, возможно, уже завтрашние вести обратят его радость в боль, боль, которая сожмет его душу, словно тисками, боль, которая убивает!

    На прошлой неделе мне предложили ознакомиться с представленными документами и высказать свое мнение о них. Ради экономии энергии сразу изложу свои впечатления в деталях.

    «Всё еще пишут, — сказали мне, когда я несколько дней тому назад вошел в офис своего поверенного. — Вот еще одна претензия на приоритет в связи с Вашим изобретением».

    «Ставят более раннюю дату под открытием Фарадея?»

    Это было слишком невероятно, но не невозможно. Я вспомнил, что в 1883 году был в Париже. О моем изобретении знали несколько друзей, вполне определенно происходило какое-то шушуканье, ведь идея «витала в воздухе».

    «И кто на этот раз?» — спросил я.

    «Тот, от кого Вы не могли бы ожидать такого. Кабанеллас…»

    Ничего более странного не могло произойти. Летом 1889 года я опять посетил Париж. Меня хорошо приняли, мое изобретение превозносили. Люди, с которыми общался, были в высшей степени компетентными специалистами. В этой связи Кабанеллас никем не упоминался. Даже теперь ничего не знаю о нем, кроме имени. Тем не менее, я был огорчен. А если это правда? Кабанеллас, рассуждал я, не покушается на плоды моего труда; Кабанеллас не пытается навредить моей работе; Кабанеллас не распространяет в газетах лживых сообщений обо мне, чтобы запятнать мое имя и репутацию. Кабанеллас мертв! И всем сердцем сожалел, что он не получил своей награды, а я не имел удовольствия выразить ему свое сочувствие и признательность за его труд, как это сделал в отношении Феррариса и Шелленбергера.

    Мне вручили английский перевод французского оригинала и попросили прочесть отмеченный абзац (63).

    Я прочел: «В качестве „дополнения“ и т. д. я предъявляю „интересный“ тип электродвигателей и т. д.».

    Я положил бумаги на стол.

    В качестве «дополнения» «интересный» тип электродвигателей?

    «Я больше ничего не желаю читать, этого достаточно, — сказал я. — Так же несомненно, как стою здесь, этот человек никогда не имел самого отдаленного представления о моем изобретении, Великий дух никогда не говорил с ним, он никогда даже и не подозревал о существовании тончайшего шепота!»

    Меня попросили ознакомиться с французским оригиналом, и я сразу остановился на заглавии. «Un systeme de machines electrigues unipolaires a commutation» — «Система униполярных электрических машин с коммутацией направления тока». За ухищрением «униполярный» скрываются исключительно машины постоянного тока. Право, было бы странным допустить, что под системой униполярных машин постоянного тока с изменением его направления подразумевалась система многополюсных машин переменного тока без изменения направления тока! Еще более странным было бы обнаружить, что чертеж, прилагавшийся к описанию, имеет хоть что-то общее с моей системой распределения переменного тока, ибо основной чертеж очевидно представляет переключающее устройство с явно изолированными секциями. Будь в этом хоть какое-то сомнение, оно было бы развеяно в заглавии. Меня не интересуют переключатели, я ими не пользуюсь, для меня они являются помехой. Я мог бы в любое время набросать такую схему, она не дала бы мне ничего нового, и отбросил бы ее в сторону без раздумий. И я это сделал.

    «Мне нужно уйти», — сказал я. На этом дело, вероятно, и закончилось бы, если бы меня специально не попросили проверить правильность английского перевода и изложить в письменном виде экспертное заключение в отношении описанных там устройств, чтобы мои поверенные могли использовать его на законных основаниях при подаче искового заявления в суд. Я внимательно перечитал французский оригинал и английский перевод. В совершенстве владея этими языками, мое сознание воспринимает истинный смысл каждого из них. Перевод — что ж, он сделан «превосходно». Я мог бы выразиться более убедительно, но, возможно, этого достаточно. Французский язык струится непринужденно и гармонично, видна связь, тонкая, но определенная между предложениями, в этом нет никаких сомнений, за исключением двух или трех отрывков. Английское изложение движется неравномерно, абзацы напоминают множество незнакомцев, случайно собравшихся на железнодорожной станции, многие места в тексте вызывают сомнения. Есть ошибки в терминологии, в различных оттенках значения, а некоторые утверждения явно надуманы. Эти размышления приводят к заключению: лучше сказать полную и неприкрашенную правду — это совершенно скверный, отвратительный перевод. Его недостатки проявляются на протяжении всего текста, но в качестве иллюстрации достаточно будет сослаться на упомянутый ранее абзац (63).

    Кабанеллас дал описание своего изобретения. Это униполярная машина, производящая постоянные токи. Это иллюзия, такая машина не может работать, но сейчас это не имеет значения. Далее он говорит: «Accessoirement», что означает «побочно, дополнительно», переводчик интерпретирует как «сопутствующее явление». Я полагаю, окажись переводчик среди избиваемых невинных, он бы избежал этой участи. Слово «accessoirement» несет в себе значительно бoльшую степень зависимости или подчиненности, чем выражение «сопутствующее явление». Действительно, одно может «сопровождать» нечто другое, не будучи непременно подчиненным ему. При таком положении вещей можно сказать, что оба явления имеют равное или почти равное значение. Но если явление названо побочным по отношению к другому, это означает, что оно имеет гораздо меньшую значимость. Всё подробное изложение посвящено однополюсной машине. Это замечательная находка Кабанелласа? Ну и находка! В заключение к сказанному он добавляет короткий и довольно туманный абзац — «accessoirement», но не в смысле «сопутствующее явление». Последнее придает высказыванию значение, которого нет в оригинале.

    Подобным же образом «interessante variete» — «интересный вариант» переведен как «интересный тип». Это глупость в квадрате! Из языкового генезиса следует, что слово «тип» значительно более весомо, чем «вариант». Первое слово передает идею нового направления, второе — возможность производного от нового.

    И еще «entrainant le deplacement» — «вызывание перемещения» «трансмутировано» в «осуществление перемещения». «Осуществить» перемещение означает выполнить это определенным способом, «вызывать» его означает выполнить это любым, бог знает каким, способом.

    Вот еще несколько слов из того же абзаца: «defini» — «заданный» переведено как «описанный»; «mouvement-demande» — «движение вынужденное» как «движение необходимое»; «polarites receptrices sectionees» — «секционированные приемные полярности» как «разъемные полюсы двигателей»; «segments bobines induits» — «индуцированные сегменты катушки» как «индуцированные сегменты»; «electros independents permanents mobiles» — «независимые постоянные подвижные электромагниты» как «независимые постоянно двигающиеся электромагниты» и т. д. Считаю, будет вполне резонно впредь говорить о переводчике как «авторе английского описания». Сказать «постоянно двигающийся» вместо «постоянный, подвижный» — это, безусловно, более чем поэтическая вольность. В этой связи я позволю себе тем не менее отметить, что я еще не указал на самую серьезную ошибку. Конечно, рассмотренные отдельно, эти ошибки, или «трансмутации», возможно, и не имели бы большого значения, но втиснутые в один абзац, короткий и нечеткий, единственный абзац во всём описании, о котором сказано, что его содержание предвосхищает мою разработку, имеют свойство создавать ошибочное впечатление. Я мог бы с легкостью доказать, что этот лежащий передо мной документ на английском языке является не переводом, а настоящим пасквилем. Нет необходимости распространяться далее на эту тему, но вышеприведенные примеры дают мне право использовать первоисточник на французском языке в качестве своего единственного ориентира.

    Складывается мнение, что Кабанеллас был неточен и неуверен в оборотах речи, по крайней мере такой вывод я мог бы сделать из опубликованных комментариев к его работе, на которые на днях было обращено мое внимание. Возможно, это так, но в этом описании, за исключением, как уже было отмечено, нескольких отрывков, он абсолютно понятен и последователен. Один момент, однако, совершенно не вызывает сомнений: он до невероятной степени идеалистичен. Если этот текст написан им, то эта его черта нашла в нем свое отражение. Посмотрите, к примеру, с каким невероятным усердием он описывает в пункте 33 обмотку своего непригодного к применению якоря постоянного тока. Это не то что непонятно, это в высшей степени нереально! Этой полудюжиной слов он мог бы распорядиться и лучшим образом.

    Требовательный эксперт, вне всяких сомнений, придаст больший вес принципиальным заблуждениям и неверным толкованиям, в которые впал Кабанеллас, когда, следуя всё той же логике, будет описывать его якобы способное действовать изобретение. В отношении заблуждений я буду великодушен. Едва ли существовал когда-либо изобретатель, который бы не делал публикации с некоторыми ошибочными высказываниями. Кто не слышал об Эдисоне, Пьюпине и Маркони? Мы ежедневно читаем о них в газетах в связи с акциями беспроволочного телеграфа, мы видим их фотографии во всевозможных ракурсах — анфас, профиль, сзади. «Великий изобретатель, вид сзади», — гласит подпись к фотографии в газете. Эти люди чрезвычайно ловки, расчетливы, практичны. Эдисон изворотлив, Маркони еще изворотливее, Пьюпин мог бы превзойти их обоих. Им не подобает делать ошибки, и всё же они выступают с официальными заявлениями о неосуществимых проектах, об устройствах, которые не могут работать, о серьезных планах создания вечных двигателей. Что касается Пьюпина, с научной точки зрения несравнимо более осведомленного из троих, то достаточно будет упомянуть его давнишнюю идею увеличения пропускной способности подводного кабеля путем разделения его на секторы, что принесло ему благородный титул «Великого изобретателя океанского телефона». Это была, конечно, иллюзия, подобная идее Кабанелласа об униполярной машине постоянного тока. Следует, однако, принять во внимание, что рассматриваемый документ относится к 1884 году. Незадолго до того, как мне рассказывают, Эдисон пытался передать запах карболовой кислоты по проводам. «Если звук передается по проводам, почему запах не может?» — рассуждал Эдисон. Чтобы о заблуждениях Кабанелласа судить беспристрастно, мы сами должны мысленно вернуться в то время. «Времена меняются, и мы меняемся вместе с ними»: помню, как лишь два года тому назад, когда я начал внедрять свою систему всемирного телеграфа без проводов, Эдисон, Пьюпин и Маркони подвергли публичному осмеянию мои пробные передачи, даже осуществленные через Атлантику, а теперь они соревнуются со мной в тех же попытках, над которыми издевались! Кто знает, они могут воспользоваться моими собственными запатентованными методами и устройствами — именно теми, которые они ставили под сомнение, поскольку, как отмечено выше, эти люди чрезвычайно ловки, расчетливы, практичны. Кабанеллас, безусловно, не походил на них. Скорее всего он человек с убеждениями, обманщик — бескорыстный и искренний. У любого, кто внимательно прочтет это описание, сложится такое впечатление. Он гораздо более склонен к самообману. Итак, забудем иллюзорность его замысла и рассмотрим его сообщение только в том отношении, что оно может содержать высказывания, порочащие новизну моей системы передачи [энергии] с помощью переменных токов, которая теперь повсеместно принята. Говорил ли Великий дух с Кабанелласом? Слышал ли он когда-либо шепот? Вот вопрос! Я внимательно просмотрел этот материал и говорю: нет! И еще раз: нет!

    Мне будет не трудно доказать свою правоту, ибо в этом отношении и текст, и чертежи совершенно не вызывают сомнений. Нет необходимости вдаваться в подробности описания. После нескольких замечаний общего характера Кабанеллас рассматривает известное явление, суть которого состоит в том, что, когда катушки якоря входят в постоянное поле или выходят из него, токи, генерированные в катушках, меняют свое направление. «Вот почему предусмотрен коллектор», — говорит он. «Но допустим, — рассуждает он по-детски, — что ток в катушках всегда мог бы непрерывно идти в одном и том же постоянном поле». И что же из этого следует? Да, конечно же, генерированные токи и будут идти в одном направлении. И здесь Кабанеллас демонстрирует колоссальное заблуждение в понимании фундаментальных законов индукции. Да разве мог такой человек постичь идею вращающегося магнитного поля? Это не упрек, а лишь констатация факта.

    Абсурдное, неосуществимое действо он предлагает произвести с помощью того, что он называет «магнитной коммутацией». Что это означает, можно догадаться из названия. Чтобы осуществить эту коммутацию, он конструирует устройство, которое, вероятно, правильнее назвать магнитным переключателем. Как обычный переключатель состоит из полностью изолированных магнитных пластин, или сегментов, так и этот магнитный переключатель составлен из совершенно изолированных магнитных сегментов, или секций. Он особо подчеркивает, что они изолированы, и таковыми они представлены на чертеже. Эта особенность неоднократно подчеркивается в тексте. Из пункта 18 явствует, что он использует термин «изолированный» в этом смысле. Он говорит: «Les polarites etant segmentes en un nombre convenable d'elements successives independants» — «Полюсы поделены на соответствующее количество последовательных изолированных элементов». Любопытно отметить, что «автор английского описания» вместо «полярности» использует слова «возбуждающий магнит». Это невежество в кубе. Термин «возбуждающий магнит» предполагает, что отдельные магниты имеют общий якорь. Но в данном случае это не так, и это немаловажно. Они всегда отделены, или изолированы. В этой связи то обстоятельство, что Кабанеллас неоднократно квалифицирует их как «элементарные», показательно. Французский язык отличается прямотой и точностью, и этот термин, без сомнения, выражает идею изолированных реально существующих элементов.

    В пункте 29 он действительно утверждает: «Il est entendu que dans les deux electros couronnes de chaque cote de l'induit, les polarites qui se correspondent, d'un cote а l'autre de l'induit, sont opposees de facon a former de tout l'ensemble, un circuit magnetique ferme» — «Понятно, что два электромагнитных венца расположены на противоположных сторонах индуцированного проводника таким образом, чтобы образовать в совокупности замкнутый магнитный контур». Но это не является единым магнитным контуром; он лишь хотел сказать, что все силовые линии замыкаются через воздушный зазор. Довольно странно, что «автор английского описания» вместо термина «венец электромагнита» использует выражение «электромагниты, образованные венцом». На сознание читателя это производит такое же впечатление, как «трансмутация» термина «полюсы» в «возбуждающий магнит». Признаюсь, роль детектива становится для меня утомительной.

    То, что Кабанеллас желает видеть свои магниты всегда обособленными, или изолированными, явствует тем не менее из пункта 48, который гласит: «Еn general, je relie les segments inducteurs magnetiquement deux a deux pour beneficier de la fermeture magnetique, par example les segments se faisant face relies par une culasse commune, ou dien j'emploie deux anneaux induits concenriques et j'effectue les fermetures magnetiques de chaque cote de l'induit, entre les electrosegments que se trouvent sur le mome rayon, sur le mome meridien» — «В основном я соединяю наводящие сегменты в пары для создания благоприятных условий путем смыкания магнитных линий, например, сегменты, обращенные друг к другу, с помощью обыкновенной скобы, или же я применяю два концентрических индукционных кольца и таким образом осуществляю магнитные смыкания на каждой стороне наводящих (колец) между электромагнитными сегментами, которые расположены на том же радиусе, на том же меридиане». В этом пункте «автор» иже с ним «трансмутируют» слова «je relie» — «я соединяю» в «я комбинирую», что вызывает возражение по причинам, которые уже упоминались выше. При внимательном прочтении этого отрывка становится совершенно очевидным, что Кабанеллас предполагал изолированность «элементарных» магнитов, если бы он когда-либо думал по-другому, он бы указал на это в данных обстоятельствах, ибо у него, по всей видимости, не вызывало сомнений неудобство соединения их в пары. Необходимо принять к сведению, что в схеме униполярной машины постоянного тока, которую он замышлял, без этого нельзя обойтись. Он постоянно думает об отделении магнитов один от другого, это его идея fix. В пункте 54 он опять вытаскивает ее на свет, высказываясь относительно переключающего устройства: «Je suits maitre de la separation relative a laisser entre les segments successifs» — «Я могу осуществлять необходимое разделение последовательных сегментов». Даже в утверждениях более неопределенного характера, как, например, в пункте 63, он настаивает на этой разделенности, или изолированности, как без труда можно увидеть в предыдущих пояснениях. Но это естественно, по-другому и быть не могло, так как он всё время думает о коммутации, о переключателе, то есть о конструкции, состоящей из абсолютно разделенных секторов. Важно помнить об этом обстоятельстве, бросающем существенный свет на рассматриваемый вопрос.

    «Магнитному переключению» он дает определение в пункте 15 как «lе deplacement graduel de la longueur de chaque роlаtite», что означает «поэтапное изменение продолжительности каждой полярности». Я намеренно говорю «поэтапное» вместо «постепенное», потому что он и здесь думает о процессе, аналогичном тому, который имеет место на секторах коллектора. Вот почему он говорит: «par addition successive a cette longueur» и т. д. — «путем последовательного прироста продолжительности».

    Такого рода магнитное переключение он предлагает осуществлять тремя разными способами: а) механическим, б) электрическим с применением коллектора, в) электрическим без любого скользящего контакта.

    В описании первого способа он обнаруживает поистине удивительное отсутствие чувства реальности. Он уподобляется совершенно неопытному ребенку. Чтение этого пункта представляет наибольший интерес с точки зрения изучения его характера. Кабанеллас производит впечатление человека приятного нрава, абсолютно честного и полностью утратившего связь с реальным миром.

    Второй способ описан в пункте 19 следующим образом: «Les moyens electriques en employant un courant continu queleongue, par exemple celui de notre machine elle-meme, distribue par un collecteur usuel et des balais fixes ou mobiles, suivant que les polarites sont fixes ju mobiles, les electro segments elementaires etant relies par leurs jonctions aux lames du collecteur selon le mode successif usuel» — «Электрический способ предполагает применение любого постоянного тока, например, тока от нашей машины, распределяемого обычным коллектором и щетками, коллектором на выходе и щетками, закрепленными или подвижными, в соответствии с тем, закреплены или подвижны полюсы, при этом элементарные электромагнитные сегменты присоединены посредством контактов к стойкам коллектора обычным последовательным способом».

    Комментируя этот отрывок, хотел бы обратить внимание на одну особенность, которая может легко остаться незамеченной и которой я придаю огромное значение. Слово «distribue» — «распределяемый», которое встречается здесь впервые, используется в связи с коллектором. Он говорит: «distribue par un collecteur» — «распределяемый посредством коллектора». В пункте 60 этот термин появляется вторично, и он опять употреблен в том же смысле: «Un collecteur cale sur l'arbre des segments, leur distribuant la polarite» — «коллектор прикреплен к оси сегментов и распределяет полярность на них». Так вот, важное обстоятельство состоит в том, что в последнем пункте 63, который будет рассмотрен в деталях, он многозначительно утверждает: «l'organe excitateur distributeur» — «возбуждающий распределяющий орган» и «En applicant a distance la distribution» — «применяя распределение на расстоянии», я выделил те слова, на которые хочу обратить внимание. Запомним этот своеобразный взгляд до поры до времени. Это, однако, следует сделать не для того, чтобы доказать очевидность беспочвенности претензий на приоритет. Оставляя без внимания многое другое очевидное в этом плане, Кабанеллас, вне всякого сомнения, доказывает в этом пассаже, что он даже не понимает способ действия вращающегося магнитного поля. Да и мог ли он? Подумайте, что он предлагает. Элементарные электромагнитные сегменты, то есть их обмотки, должны быть соединены с пластиной коллектора обычным способом, а постоянный ток должен подаваться на пластины через щетки, закрепленные или подвижные. Если щетки движутся по кругу, будет происходить постепенное смещение абсолютных полюсов в пространстве, но если щетки установлены стационарно, то — будут элементарные электромагнитные сегменты или нет, — абсолютные полюсы будут находиться в стационарном положении в пространстве. Кабанеллас не видит разницы! Чтобы такой человек мог когда-либо отчетливо представить себе принцип вращающегося магнитного поля — невероятно, но чтобы он, с его компетенцией, мог сконструировать действующую установку — просто невозможно.

    Рассмотрим третий способ магнитной коммутации. Это показательно. Две конструкции, кажущиеся раздельными, в действительности находятся на одной оси. Дается вполне понятное описание устройства. Слева находится кольцо Грамма с предполагаемым полем вокруг него и с окружающими его отдельными катушками, соединенными в пары. Справа показана корона из изолированных магнитных секций, или «простых» магнитов, которая, по расчетам, должна находиться напротив второй такой же короны, при этом индуцированная обмотка поддерживается в пространстве между ними. Как без труда можно понять, у «простых» магнитов их полярные поверхности расположены таким образом, чтобы образовать два практически постоянных магнитных кольца, и они, обращенные к друг другу, имеют противоположную полярность. Соединения катушек кольца Грамма с обмотками «простых» магнитов достаточно понятны даже без описания. Индуцированная обмотка и возбуждающий магнит кольца Грамма предположительно стационарны, в то время как кольцо с двумя коронами магнитов вращается.

    Разъясняя этот способ, Кабанеллас обнаруживает еще одно ошибочное представление о фундаментальных законах электричества и магнетизма. Я намеренно говорю о неправильном представлении, ибо не считаю, что он несведущий человек. Но он, очевидно, находился под влиянием навязчивых идей, которые так сильно поразили его сознание, что отчасти парализовали его способность мыслить логически. Исходя из этого материала, я должен сказать, что его две первые идеи касались коммутации и синхронности. Не испытывай он доминирующего влияния таких заблуждений, он бы, вероятно, сразу осознал, что его проект магнитной коммутации без скользящих контактов является иллюзией, чем-то неосуществимым. В то время каждый учащийся знал, что в динамоэлектрической, или электродинамической, машине электрические и магнитные явления есть сопутствующие и, определенно, соотносятся в направлении. Электрический поток не может изменить своего направления без механического или другого эквивалентного воздействия, и это так же верно для магнитного потока. Коммутация — это процесс, посредством которого последовательные импульсы противоположного направления становятся однонаправленными. Ток, проходящий по проводнику в определенном направлении, создает магнитные силовые линии в соответствующем направлении; если ток реверсирован, реверсируются и линии. Чтобы коммутировать линии, должны быть коммутированы токи.

    Выше я останавливался только на тех заблуждениях и ложных представлениях Кабанелласа, без понимания которых невозможно обойтись, чтобы убедительно объяснить его туманные и неопределенные утверждения в пункте 63, где он неоднократно намекает и претендует на первенство в связи с моим изобретением. Прежде чем обсуждать это подробно, необходимо посвятить несколько слов общей характеристике содержания в части IV «описания».

    Кабанеллас весьма корректно аргументирует, что для получения постоянных токов от обмоток путем сложения их электродвижущих сил невозможно обойтись без коммутации. Чтобы добиться этого, необходимы скользящие контакты. Но эта коммутация, говорит он, может быть электрической или магнитной. Его магнитная коммутация может быть осуществлена без скользящих контактов. Таким образом, что очевидно для всех, решается важная проблема в электричестве. В то время все квалифицированные электротехники знали, что путем вращения витков провода в униполярном поле, как он предполагал, никакого тока не образуется, даже если бы все электротехники ошибались, а Кабанеллас был бы прав, ему всё равно не удалось бы, как он надеялся, реализовать этот замысел, потому что он не осуществлял магнитную коммутацию. Он не только противоречил основным законам индукции, но и обманывался сам. Тем не менее я, рассматривая достоинства этого доклада, не смотрю на него глазами требовательного эксперта и не собираюсь придавать большого значения его иллюзиям. Но настаиваю на том обстоятельстве, что эти иллюзии — генерирование постоянных токов неосуществимым способом, нереальная магнитная коммутация — были его великими изобретениями, иначе что же было, как он считал, «побочным» вторичным, интересным, о да, любопытным, возможно, но, во всяком случае, не имеющим большого значения. Он считал свою не способную действовать униполярную машину с неосуществимым процессом магнитной коммутации таким великим изобретением, что все другие люди, какую бы пользу они ни принесли обществу, казались ему ограниченными и малозначащими по сравнению с ним. Давайте рассмотрим, насколько эта точка зрения может быть оправданной.

    Кабанеллас изобрел новую машину, прекрасную, великолепную, это так, но, безусловно, сложную. Он непрактичен, но он художник и не может не чувствовать преимуществ простоты. У машины имеются две стационарные части и две подвижные при весьма сложных конструктивных особенностях. Венцы независимых элементарных магнитов очень громоздки, их неудобно собирать и закреплять. Он должен это знать, но у него нет выбора: нужно обеспечить изолированность магнитов, но соединить их с помощью обычной магнитной скобы нельзя. Эта конструкция является коммутатором — магнитным переключателем. Всё это достаточно хлопотно, но впереди ожидаются большие трудности. Когда он попытается использовать такую машину в качестве двигателя, то обнаружит, что она не хочет запускаться. Ну, конечно, ему необходимо предусмотреть какое-то устройство для ее запуска, и, поскольку было бы почти смешно применять механические средства, когда у него в распоряжении имеется постоянный ток от его униполярного генератора без коммутатора, он применяет — что же он применяет? — коммутатор. Но затем отказывается от коммутатора и специально изобретает двигатель без коммутатора. Он, соответственно, убирает его. Когда же он его убирает? По достижении определенной скорости. Он, конечно, убежден, что при этом условии ему необходимо некое вспомогательное устройство. Но худшее еще не сказано. У этого двигателя есть характерная особенность, изумительная и неслыханная. «Для стабильной работы требуется, чтобы сила сопротивления была всегда равна движущей силе» — сколь невероятным это ни покажется, он говорит это совершенно серьезно, ибо, невзирая на трудности, замышляет создание центробежного стабилизатора для достижения этой вызывающей изумление цели. Цитата из пункта 62: «La permanence du fonctionnement comme recepteur avec organe excitateur, exige gue l'effort resistant egale toujours l'effort moteur, je l'obtiens par l'intermediate d'un regulateur centrifuge» — «Стабильная работа в качестве двигателя с возбуждающим приспособлением требует того, чтобы тормозящие факторы были всегда равны прикладываемому усилию, я добиваюсь этого посредством центробежного регулятора». В отношении этого отрывка я позволю себе обратить внимание на соответствие слов у «автора английского описания».

    Если предположить, что Кабанеллас, как об этом и заявлено, имел представление о моей системе с ее недорогим, идеально простым устройством, с самозапуском двигателей, в которой движущая сила всегда превышает силу противодействия, и которая избавлена от всех вышеописанных напастей и осложнений, увидел бы он в ней «интересный вариант», «побочное явление», сопровождающее нечто иное? Какое нелепое предположение! Даже если бы Кабанеллас воспринял и понял, как действует мое «вращающееся поле», даже если бы он воплотил в своей иллюзорной машине все рабочие части моей установки, так, чтобы и в разобранном состоянии все части работали, я бы и тогда имел основание сказать: «Великий дух никогда не говорил с Кабанелласом». Если бы он изобрел мою систему, он не потратил бы много времени, чтобы понять, что он может работать с ней, используя три провода. При всех своих заблуждениях и неправильных представлениях он обладал проницательным умом и стремился к упрощению, хотя и не подкрепленному практическими соображениями. В пункте 20 он говорит: «en utilisant un minimum de courants particuliers» — «использование минимума отдельных токов». «Автор и т. д.» излагает это как «использование минимального числа отдельных токов». В этом случае он имел бы идеально простую установку, для эксплуатации которой требуется три провода вместо усложненной двухпроводной установки, и преимущества первой, несомненно, сами собой обратили бы на себя его внимание с большей вероятностью, поскольку уже в то время он должен был знать, что в схеме постоянного тока предпочтение по ряду причин также отдавалось трехпроводной установке. Но реальность такова: Кабанеллас не имел даже отдаленного представления о моей системе, он никогда не улавливал ни малейшего шепота. Он был достаточно умен и находчив, но без царя в голове. Он был весь во власти иллюзий, их он видел во всем блеске, но был слеп ко всему другому. Его утопическая однополюсная машина с ее неосуществимой магнитной коммутацией постоянно пребывала перед его мысленным взором. Он видел ее как единое целое, как одну-единственную драгоценность. Одна лишь мысль о том, чтобы разделить ее на составные части, превращала ее в разбитый вдребезги алмаз — отдельные фрагменты не представляли для него никакой ценности.

    Добросовестно отмечая достоинства этого отчета, нельзя впадать в заблуждение. Просматривая научные доклады или патентные описания, часто изумляешься тому, как близко подходит изобретатель к какой-либо истине, не узнавая ее. Но такое приближение очевидно только для внимательного исследователя. Чаще бывает так, что истина так же далека от сознания изобретателя, как лунный лик. Следует иметь в виду, что изобретатель — человек экстраординарный. Природа одарила его бесценным качеством, возможно, самым чудесным, каким только может обладать человек, но природа также и ослабила некоторые его способности. Никто не может сказать, что изобретатель видит, а что не видит. Он может отметить изысканность мысли, но он может не заметить кулак у себя под носом. Помнится, у меня был друг, с которым я в течение многих лет играл в бильярд. Мы надолго расстались и затем встретились вновь. При встрече мне бросилось в глаза, что у него был поврежден большой палец на руке, и оказалось, что он поранился, когда был совсем юн. Я играл с ним долгие годы, часто пожимал его руку, знал каждую черточку на его лице, и даже сейчас отчетливо представляю его себе, и всё же я никогда не замечал поврежденного пальца. В этом не было ничего противоестественного. Я всегда смотрел в лицо друга, в его глаза, и никогда — на палец. Думается, что даже если бы навязчивые идеи Кабанелласа были рациональными и осуществимыми, ему бы, по всей вероятности, всё равно не удалось бы сделать открытие, осознав принципы, которые привели к коренным изменениям в производстве и передаче энергии.

    Машинописный текст статьи без библиографических данных, найденный в архиве музея Николы Теслы. Возможно, относится к 1905 г.

    43

    Перспективы применения радиосвязи на железных дорогах

    Нет нужды доказывать, что железные дороги являются той сферой, где применение удобной беспроводной системы связи выгодно. Вне всякого сомнения, наиболее широко она будет использоваться для передачи поездам общей информации, необходимой путешественнику для поддержания связи с миром. В ближайшем будущем телеграфный аппарат, сообщающий новости, биржевой аппарат, передающий котировки ценных бумаг, телефон и другие подобные аппараты составят стандартный набор радиоаппаратуры железнодорожного поезда. Успех в этой сфере тем более неизбежен, что новое не противоборствует со старым, а, напротив, очень выгодно его дополняет. Технические проблемы сводятся к минимуму благодаря применению радиопередатчика, эффективность которого не снижается от расстояния.

    Огромные людские и имущественные потери вызвали необходимость усовершенствования приспособлений безопасности в вагонах. Но после взвешенного изучения вопроса становится ясно, что радиотехника имеет мало перспектив в этом направлении. В настоящее время железные дороги спешно переходят на электротягу, в связи с этим встал вопрос об установке разного рода сигнальных приборов, из которых радиотелефон является наиболее значительным. Это чрезвычайно полезное усовершенствование обязано своим появлением профессору Дж. Пули, внедрившему его в Германии восемь лет тому назад. Если инженер или кондуктор любого поезда будет иметь возможность связаться по телефону с любым другим поездом или станцией на пути следования и получить полную и точную информацию, вероятность столкновений и других аварий значительно уменьшится.

    Общественное мнение должно добиться безотлагательного внедрения этого изобретения.

    Те дороги, которые не планируют такое переустройство, могут пользоваться беспроводной передачей для подобных целей, но ввиду того, что каждому поезду, кроме комплекта оборудования, потребуется высококвалифицированный радист, многие дороги, возможно, отдадут предпочтение телеграфу, если только у них не появится возможность использовать радиотелефон.

    «Vincennes Sun», 17 апреля 1907 г.

    44

    Возможность использования энергии воды в морских сражениях будущего

    Взрыв динамита под поверхностью моря создаст приливную волну, которая может поглотить флотилию

    Недалеко то время, когда в сражениях будут применяться энергия воды и электрические волны, и тогда все огромные потери в войнах на море будут исключены. Человечество быстро продвигается вперед в этом направлении, о чем со всей очевидностью свидетельствуют многие факторы.

    В условиях существующей военной обстановки наибольшее сожаление вызывает то, что деятельность столь многих выдающихся умов должна использоваться неэкономично, так как она не может быть постоянно нацелена на научную истину, неизменную и перманентно полезную, но должна всецело определяться победами и поражениями в борьбе противостоящих сторон. Это лихорадочное стремление удовлетворить срочную потребность, создавать образец за образцом — один для истребления другого, слиться в одном стихийном потоке, полном противоречий, ведет, как в кошмарном сне, от одной нелепости к другой. Чудовищем такого рода является последнее творение создателя военно-морских судов — линейный корабль водоизмещением 20 000 тонн. Компетентные специалисты выражают неодобрение этой идеи.

    Всё указывает на целесообразность разработки небольшого судна с двигателями внутреннего сгорания, со сверхвысокой скоростью и с небольшим количеством вооружения огромной разрушительной силы. Однако новая громадина поразительно отвечает утилитарным потребностям нашего времени. В результате атаки он может уничтожить флот целого государства. Он столь же эффективен и в обороне.

    Если его оснастить соответствующими акустическими и электрическими приборами, ему нечего бояться подводной лодки, а обычная торпеда едва ли повредит его. Вот почему первый из этих монстров, построенный в Англии, получил название «Дредноут». Но теперь найдено новейшее средство нападения на такую крепость или с берега, или в открытом море, против которого вся мощь его пушек и его защитная броня окажутся бесполезными. Это — приливная волна. Такую волну можно вызвать 20 или 30 тоннами дешевого взрывчатого вещества, доставленного к месту назначения и беспрепятственно взорванного с применением автоматических устройств с дистанционным управлением.

    Рассматриваемое здесь приливное возмущение представляет собой своеобразное гидродинамическое явление, во многих отношениях отличное от обычно происходящих, для которых характерна ритмическая последовательность волн. Оно состоит, как правило, лишь из одного идущего впереди вала, за которым следует впадина, при этом вода, если нет других причин для образования волн, пребывает в совершенном спокойствии перед валом и почти такой же позади. Вал образуется от внезапного взрыва, или поднятия, и остается, как правило, симметричным на протяжении большей части своего пути. Тот, кто сталкивался с приливной волной, должен был заметить, что вода поднимается не круто, а спуск во впадину резкий. Это объясняется тем, что вода, по-видимому, поднимается постепенно под действием изменяющейся силы, колоссальной вначале, но быстро затухающей, в то время как поднятая масса воды устремляется вниз под действием постоянной силы тяжести. Вызванные естественными причинами, эти волны не представляют большой опасности для обычных судов, потому что возмущение происходит на очень большой глубине.

    Чтобы иметь достаточно точное представление об эффективности этого нового средства уничтожения, особенно пригодного для береговой обороны, допустим, что в качестве динамита для образования приливного возмущения задействовано 30 тонн смеси нитроглицерина. Это вещество, примерно в два раза тяжелее воды, можно хранить в кубовидном танке со стороной восемь футов или в сферическом сосуде диаметром 10 футов. Итак, читатель понимает, что этот заряд должен быть подключен к безотказному автоматическому устройству с дистанционным управлением, хорошо защищен и частично погружен в воду или прикреплен к подводной лодке, которой управляет опытный оператор на большом расстоянии. В нужный момент подается сигнал, заряд опускается на должную глубину и подрывается.

    Вода не может сжиматься. Гидростатическое давление одинаково во всех направлениях. Взрыв распространяется в нитроглицериновой смеси со скоростью три мили в секунду. Вследствие всех этих причин вся масса превратится в газ прежде, чем вода сможет отступить, и образуется сферический пузырь диаметром 10 футов. Давление газа на окружающую воду составит 20 000 атмосфер, или 140 тонн на квадратный дюйм. Когда объем огромного пузыря увеличится в два раза, он будет весить столько же, сколько и вытесненная им вода, с этого момента пузырь, нижняя часть которого всё более и более сводится на кону, будет выталкиваться вверх быстро нарастающей силой, стремящейся достичь величины 20 000 тонн. Под воздействием этого чудовищно мощного толчка он прорвался бы к поверхности, подобно пуле, если бы не сопротивление воды, которое ограничит его максимальную скорость 80 футами в секунду.

    А теперь рассмотрим размеры и энергетику поднятия. Тепловая потенциальная энергия смеси составляет 2 800 тепловых единиц на фунт или, в механическом эквиваленте, почти 1 000 футо-тонн. Конечно, только часть этого огромного потенциала может быть преобразована в механическое усилие. Теоретически 40 фунтов надежного бездымного пороха было бы достаточно, чтобы сообщить 850-фунтовому снаряду с «Дредноута» вышеупомянутую потрясающую скорость, но в действительности затрачивается заряд 250 фунтов. Образовавшаяся приливная волна — это динамический преобразователь, значительно превосходящий пушку, его максимально возможный коэффициент использования достигает 44 процентов. Если вместо этого показателя остановиться, по традиции, на 33 процентах, то от совокупного потенциала запала будет получено около 25 000 000 футо-тонн механической энергии.

    Другими словами, 25 000 000 тонн, то есть 860 000 000 кубических футов воды, могли быть подняты на один фут, меньшее же количество, соответственно, на большую высоту над уровнем моря. Высота и длина волны будут определяться глубиной, на которой произошло возмущение. Через зев в центре, как у вулкана, будут с ревом выбрасываться пузыри. Через какие-нибудь 16 секунд образуется впадина глубиной 600 футов, если считать от обычного уровня океана, окруженная идеально круглым валом приблизительно одинаковой высоты, который будет увеличиваться в диаметре со скоростью около 220 футов в секунду.

    Нет смысла обсуждать последствия такого взрыва для находящегося неподалеку судна, каким бы большим оно ни было. Весь военно-морской флот большой страны, собранный в одном месте, может быть уничтожен. Небесполезно узнать, что такая волна могла бы сделать с линейным кораблем типа дредноут на значительном расстоянии от места ее зарождения. Несложный расчет покажет, что когда внешнее кольцо увеличится в размере до трех четвертей мили, вал длиной около 1 250 футов всё еще будет более 100 футов высотой от гребня до обычного уровня моря, а когда диаметр кольца увеличится до мили с четвертью, вертикальное расстояние от гребня до подошвы волны превысит 100 футов.

    Первый удар воды создаст давление три тонны на квадратный фут, которое в расчете на всю подвергаемую воздействию поверхность, скажем, 20 000 квадратных футов, может достичь 60 000 тонн, что в восемь раз превышает силу отдачи артиллерии одного борта. Уже первый удар может быть фатальным. В течение более чем десяти секунд судно будет полностью погружено в воду и в конце концов опустится во впадину с высоты примерно 75 футов, при этом погружение будет до некоторой степени подобно свободному падению. Затем оно опустится на большую глубину, чтобы никогда не всплыть.

    «Vincennes Sun», 1 июля 1907 г.

    45

    Будет ли достигнуто полное господство в воздухе?

    Прогресс в воздухоплавании в значительной степени зависит от совершенствования процесса создания большого механического усилия легковесным аппаратом. Анализ ближайших и отдаленных возможностей получения движущей энергии выявляет четыре способа: во-первых, путем преобразования тепловой энергии горючего в двигателе внутреннего сгорания; во-вторых, путем превращения электрохимической энергии напрямую или энергии аккумуляторной батареи в электромоторе, в-третьих, путем использования непосредственно на движущемся летательном аппарате энергии окружающей среды и, в-четвертых, путем беспроводной передачи на аппарат электрической энергии от находящегося на расстоянии источника.

    Два первых способа основаны на использовании запаса энергии, который необходимо иметь на борту и периодически пополнять, ограничивая, таким образом, скорость и дальность полета. Два последних предполагают приток энергии на летательный аппарат извне, при этом источник энергии неисчерпаем и действует непрерывно. Следовательно, они в огромной степени превосходят первые два.

    Глубокие размышления приводят к заключению, что беспроводный способ будет определенно наилучшим для спокойствия и благоденствия человечества.

    Но каким бы совершенным ни был способ получения движущей энергии, никогда не появится возможность выйти за пределы достаточно жестких ограничений в рабочих характеристиках летательных аппаратов.

    Воздушный океан идеально приспособлен для путешествий, поскольку он действительно предоставляет абсолютную свободу движения в трех направлениях, однако физические свойства воздуха делают его в некоторой степени непригодным для перемещения. Это вязкая, или тягучая, субстанция, в сто раз превышающая по этим свойствам воду, и это значит, что она создает значительное сопротивление движущемуся телу. Ее небольшая плотность по многим причинам пагубна для высокоэффективного продвижения вперед. Ее сжимаемость, турбулентность и непрекращающиеся возмущения — всё это служит причиной дополнительных специфических потерь движущей энергии. Эти свойства навсегда исключают возможность сверхвысокой скорости в окружающей атмосфере для самолета, а также и для управляемого аэростата.

    Принимая во внимание все возможные будущие достижения, нет оснований ожидать лучших показателей на суше или на воде.

    «Mansfield Shield», 7 октября 1908 г.

    46

    Тесла рассуждает о приоритете США на полюсе

    Полёт на управляемом аэростате легко осуществим

    Редактору «New York Tribune», 2 октября 1909 г.

    Сэр, согласно официальному сообщению Вашингтона, опубликованному в вашем номере за 26-е число прошлого месяца, гидрографическое управление Министерства военно-морского флота составляет новую карту, включая Северный полюс в территорию Соединённых Штатов. Очевидно, в гидрографическом управлении имеется свой Мольтке. Как бы то ни было, придется немало потрудиться, прежде чем эти притязания будут признаны другими государствами. Позвольте мне указать на несколько причин, объясняющих, почему они до поры до времени несостоятельны.

    Первое. Покорение полюса есть действо, которое не имеет ничего общего с природой открытия, дающего моральное, если не юридическое, право на государственное владение. В течение столетий местоположение этой воображаемой точки было безошибочно установлено, следовательно, о его открытии не может быть и речи. Добраться до полюса — достижение, заслуживающее внимания по причине связанных с этим трудностей и опасностей. Это только подвиг мужественного человека, спортивное достижение, которое дает исполнителю право на приз или награду, и ничего более.

    Второе. Протяженность полярной области еще предстоит определить. Это само по себе может стать предметом бесконечной полемики.

    Третье. Полярная область расположена в центре океана, который, будь он покрыт льдом или нет, является международным достоянием.

    Четвертое. Не в пользу этих притязаний говорит и тот факт, что в полярной области не может быть ничего, кроме скованного льдом моря, поскольку аккумуляция воды на полюсе является неизбежным следствием физических законов. Это поразительно ярко демонстрирует старина Марс, планета, где в течение большей части года практически вся вода удерживается на полюсах.

    Пятое. Произведенные исследователями измерения были примерными, т. е. сомнительной точности, при этом секстант в условиях искусственного горизонта был настроен исключительно на определение местонахождения полюса. В этих областях возникают многочисленные помехи при проведении точных научных исследований, но основное состоит в том, что воздух наполнен мельчайшими наэлектризованными кристаллами льда, которые вызывают цветовые блики, миражи и другие рефракционные эффекты. В таких условиях возможна погрешность до пятидесяти миль.

    Шестое. Нет компетентных очевидцев, чтобы подтвердить показания приборов и данные научных наблюдений. Когда найденная истина без труда доказуема, очевидцы излишни, но в этом частном случае, когда немедленное повторение опыта невозможно, подтверждение дополнительными фактами обязательно.

    Весьма вероятно, что при данных обстоятельствах научные организации, такие, как Географическое общество или Геодезическая служба, воспримут эти сообщения в качестве не более чем неподтвержденных теорий, особенно по той причине, что каждому человеку должно быть ясно, что эти последние полярные исследования не имеют ничего общего с бескорыстными попытками первопроходцев, которые были до некоторой степени предприятиями отважных людей, любителей приключений, опасностей, людей достаточно энергичных, чтобы безрассудно рисковать ради известности и популярности.

    Ввиду большого общественного интереса, возросшего до степени национального сознания, необходимо, если Соединённые Штаты Америки продолжают упорствовать в своих претензиях, чтобы незамедлительно была организована еще одна экспедиция или на средства от пожертвований граждан, или на выделенные конгрессом ассигнования. Управляемый аэростат доведен до такого совершенства, что исследование полярных регионов с его помощью представляет собой несложную и легко выполнимую задачу. В Германии при энергичной поддержке императора уже начата подготовка, но весьма вероятно, что если бы США немедленно объявили о намерении организовать такую экспедицию, это желание было бы встречено с уважением, ибо это — неоспоримое свидетельство, что какими бы несовершенными ни были последние попытки, они нацелены на создание основ для справедливых претензий государства и, конечно, являются доказательством удивительной энергии и мужества американцев.

    47

    Научные знания и открытия — главные силы, которые приведут к прекращению войны

    Что бы ни сулили грядущие эпохи роду человеческому, развитие пока еще будет выбирать в качестве своего вероятного пути непрерывную борьбу. Очевидно, что для обеспечения прочного мира на земле одной цивилизованности недостаточно. Она лишь сдерживает конфликт, усиливая тем самым его напряженность и глубину, делая его еще более грозным и разрушительным.

    Современная грандиозная битва производит впечатление иного рода, вызывает чувство страха, ощущение серьезности конфликта, возникающее от понимания того, что на мир обрушилось страшное бедствие, более ужасающее, чем любое другое, вошедшее в анналы истории. Внезапно лишенные призрачной уверенности в будущем и подведенные к осознанию глобальной опасности, о существовании которой они и не подозревали, народы охвачены ужасом. Ситуация выглядит таким образом, как если бы произошел огромный сдвиг земной коры и исполинские силы вырвались из оков, угрожая всему земному шару.

    Никогда ранее в битву не вовлекались такие огромные армии и не применялись средства такой разрушительной силы; никогда так много не зависело от победы оружия. Уже понесенные убытки достигают десятков миллиардов долларов; более трех миллионов человек убиты или стали инвалидами, на каждого из них приходится десять, которые стали полными развалинами на нервной почве, их невзгоды перенесутся на последующие поколения и омрачат их дни. По всему миру бесчисленные потерпевшие, терзаемые страхом, задаются вопросом, как долго может продолжаться эта ужасающая бойня и кощунственное расточительство.

    Война по своей сути есть проявление энергии, предполагающее ускорение или замедление движения массы под воздействием силы. Тогда для всех случаев будет непреложной истиной, что время, необходимое для сообщения заданной скорости и кинетической энергии движущемуся телу, пропорционально массе. Этот же закон применим для погашения скорости и инерции силой сопротивления. Переведенное на общедоступный язык, это означает, что период, или продолжительность, вооруженного конфликта теоретически пропорционален величине армий, или количеству сражающихся.

    Можно, конечно, допустить, что ресурсы вполне достаточны и таковы все другие условия. Более того, делая выводы из предыдущих войн, необходимо принять во внимание ряд обстоятельств и все количественные показатели, выраженные в соответствующих числовых значениях в статистических и других данных. Предположим, если верить источнику, в теперешнюю битву вовлечены 12 000 000 человек, и сравнение с некоторыми прошлыми войнами дает следующие результаты:

    Войны Число участн. боев. действий Продолжит. Примечания
    годы мес.
    Гражданская война 4 600 000 4 Большая протяженность линии фронта, плохая связь, неэффективное вооружение
    Текущие военные действия 12 000 000 10
    Франко-германская война 1 700 000 13 Не вполне современная боевая техника
    Текущие военные действия 12 000 000 7 6
    Русско-японская война 2 200 000 1 6 Растянутость линии фронта, плохая связь и скверная по сути кампания
    Текущие военные действия 12 000 000 8
    Первая Балканская война 1 200 000 6 Во всех отношениях отвечает современным требованиям
    Текущие военные действия 12 000 000 5
    Гипотетическая война средних масштабов 2 425 000 1 9 Различные причины, влияющие на продолжительность
    Текущие военные действия 12 000 000 8 6

    Если бы имеющиеся ситуации были скорректированы на основе данных, указанных в таблице, можно вывести разумные и короткие сроки ведения боевых действий. А если учесть решающую роль транспорта и средств связи, возросшую мощь и разрушительное действие вооружений и другие факторы, способствующие увеличению скорости подачи энергии, то, как ни парадоксально, естественным результатом этих мер явится скорейшее завершение военного конфликта. Лучшее из сделанных заключений относится, конечно, к Балканской войне как самой современной. Согласно этим данным, продолжительность войны должна составить пять лет. Даже если это лишь приблизительные раскладки, их вполне достаточно, чтобы показать: если не случится какого-либо экстраординарного развития событий, эта война будет долгой.

    Действительно, с чисто научной точки зрения создается впечатление, что такой крупномасштабный конфликт может закончиться только в результате истощения. Огромная протяженность линии фронта и отсюда очевидная невозможность нанесения решающего удара по причине нехватки орудий и обслуги является еще одним доводом в поддержку этой теории. Также чрезвычайно важно пронаблюдать в этой связи, как первоначальные линии фронта, стратегически определенные заблаговременно, постепенно переместились и распрямились, при этом воюющие скопления стали, в конце концов, входить в соприкосновение на рубежах, определяемых естественным правом и грубой силой атаки, не считаясь с военным замыслом. Вероятность такого исхода усиливается тем обстоятельством, что нарушение естественного хода вещей охватывает огромное пространство, делая доставку предметов первой необходимости в некоторые из втянутых в конфликт регионов исключительно трудной.

    Тогда, допуская, что эта теория верна, мы имеем все основания ожидать, что при сохранении нормальных условий битва будет длиться более или менее в соответствии с той формой, в которую выльется истощение. Отсутствие пищи, износ и нехватка боевой техники, металлов, химических препаратов и амуниции, скудость наличного капитала, отсутствие притока обученных солдат или полное психическое опустошение в людях — вот лишь некоторые из признаков, с которыми следует считаться и любой из которых может неизбежно повлечь за собой прекращение военных действий раньше обычного. Не составит труда доказать, что война не сможет затягиваться долго.

    Ежедневная стоимость военных операций составляет более сорока миллионов долларов, и, судя по потерям, официально зарегистрированным на сегодня, в среднем двадцать пять тысяч человек ежедневно погибают или получают увечья в бою. При таких условиях только следующие четыре месяца активных боевых операций выльются в пять миллиардов долларов затрат и приведут к гибели трех миллионов человек. Очевидно, что это слишком тяжкое дополнительное испытание, чтобы смириться с ним, ибо даже если живая сила и была бы предоставлена, то капитала, безусловно, окажется недостаточно. Следовательно, можно с уверенностью сделать вывод, что мир будет восстановлен до начала следующей зимы, если бы не одна возможность или, скорее, вероятность, а именно — полное прекращение действий, что было бы наихудшим бедствием, так как, принимая во внимание истинную причину войны и настрой вовлеченных в нее народов, это не могло бы не продлить войну на годы.

    Предсказывать будущее — неблагодарное занятие, но научное предвидение является полезной формой устремления, и оно могло бы быть значительно более полезным, если бы человеческая природа не была в такой степени предрасположена оставлять советы и уроки без внимания. Тщательно изучив ситуацию, специалист может с полной уверенностью предсказать определенные события. Так вот, существуют только три исхода этой войны: во-первых, крах Австрии, во-вторых, захват Англии немцами и, в-третьих, истощение и разгром Германии.

    Падение Австрии неотвратимо и должно произойти в течение нескольких ближайших месяцев. Она может проигнорировать зависимость от Германии и запросить мира самостоятельно, ради собственного спасения, но вызывает сомнение, что она может предложить Антанте что-либо приемлемое. Гораздо более вероятно, что старый император, уставший от жизни и осознающий несправедливость положения Австрии, отречется от престола и будет рекомендовать раздел. Это не может не приветствоваться испытывающей сильное давление Германией, так как появляется возможность заключить мир на условиях, которые не будут унизительными и компенсируют ей вероятную потерю Эльзаса, Лотарингии и Восточной Пруссии.

    Австро-Венгерская монархия сохраняется десятилетиями каким-то чудом. Она давно должна была бы распасться, если бы не упрямая приверженность венгерских магнатов обещанию, данному Марии-Терезии, и исключительная популярность правящей династии, в значительной степени благодаря сочувствию подданных всех национальностей, вызванному многочисленными необычными злоключениями, которые выпали на долю дома Габсбургов.

    Общепризнано, что противоестественное существование этого феодального государства представляет собой постоянную угрозу европейскому миру и является основной причиной нынешнего потрясения. Раздел территории Австро-Венгерской империи по национальному принципу удовлетворит все враждующие государства на Европейском континенте. Это, безусловно, произойдет. Это естественный и неизбежный процесс, подобный падению перезрелого яблока с яблони.

    Пока еще рискованно делать прогноз в отношении второй возможности, следует подождать дальнейших событий, прежде чем можно будет сделать выводы относительно исхода. Имеется немало факторов, свидетельствующих о том, что Германия ведет энергичную и спешную подготовку нападения на Англию, и ее действия на востоке и западе, возможно, служат маскировкой этого хода. Напряженность между двумя странами очень велика, основания для раздора носят специфический характер, и мирное разрешение конфликта маловероятно.

    Третий из упомянутых исходов означал бы, по-видимому, затяжную войну. Германия не сможет прорвать заградительные сооружения из стали во Франции и Бельгии, ее отдельные победы в Польше не смогут произвести впечатление на русские армии. Она должна будет постепенно переходить к обороне. Ей приходится нести самое тяжкое бремя и, по словам финансистов и статистиков, суждено выйти из игры первой.

    Однако с народом столь разумным, трудолюбивым, изобретательным и крепко сплоченным делать такие прогнозы рискованно. Немцы в полной мере способны «сделать нечто из ничего» — вырастить два стебелька травы там, где раньше рос один, и именно это, а также их совершенная военная структура сохраняют опасность длительного конфликта. Такой перспективы достаточно, чтобы вызвать самые мрачные опасения, и в сознании провидцев превалирует мысль о том, как предотвратить такой паралич в развитии и не допустить вселяющую ужас кровавую бойню и потери. Реально ли это?

    Все непосредственно причастные полны непреклонной решимости отстаивать эти пути окончания войны до последнего на том основании, что преждевременный мир, оставляющий нерешенными жизненно важные вопросы, мог бы означать лишь сохранение существующего пагубного режима и повторение бедствия. Чтобы остановить конфликт, необходимо выдвинуть свежий и неопровержимый аргумент. Ситуация отчаянная, но есть надежда. Это надежда на науку, открытия и изобретения.

    Современная техника как результат научных разработок несет ответственность за эту катастрофу; та же наука и уничтожит порожденное ею чудовище Франкенштейна. Говорят, что в незапамятные времена остроумное изобретение Архимеда решило исход сражения и положило конец длительной войне. Миф это или факт, но такая история преподносит вдохновляющий урок. Что и нужно в данный критический момент, так какое-либо открытие подобного рода. Вновь обнаруженная сила, новое средство, во что бы то ни стало какой-нибудь аргумент, старый или новый, но такого рода, чтобы поразить и моментально просветить, чтобы привести воюющие стороны в чувство и представить неопровержимое доказательство безрассудства и бесполезности продолжения жестокой битвы.

    Эта идея, которой я сам посвятил годы труда, теперь овладела учеными и специалистами всего мира. Тысячи изобретателей, воодушевленные такой уникальной возможностью, взялись за разработку какого-либо способа или аппарата, чтобы осуществить замысел, и среди электротехников, химиков, инженеров во Франции, России и особенно в Германии развернулась лихорадочная деятельность. Никто не может сказать, что именно породит народный гений, но нелишне заметить: результаты будут таковы, что своею сутью окажут влияние на исход и продолжительность битвы.

    Именно поэтому придается значимость туманным сообщениям о таинственных экспериментах с цеппелинами, о взрывоопасных лучах и магических бомбах, поскольку, хотя такие новости не могут восприниматься как достоверные, они, поистине, открывают такое множество потрясающих возможностей. В производстве и применении новейших средств ведения войны Германия занимает первое место не только благодаря превосходному качеству изделий и отменной подготовке специалистов, но и потому, что это стало жестокой необходимостью, вопросом жизни и смерти в ее нынешнем тяжелом положении.

    Ненадежные и зачастую противоречивые донесения о ежедневных событиях, получаемые из различных источников, не позволяют сложиться определенному мнению о подлинном состоянии дел, но, несмотря на жесткую цензуру, основные факты постепенно становятся известными. Один из них говорит о том, что немцы были более всех подготовленными к войне.

    Даже французы, хваставшиеся своей боеготовностью, оказались не в состоянии провести мобилизацию вовремя. Вторжение в Восточную Пруссию стало лишь отчаянным шагом русских с целью отвлечь неприятеля и ослабить давление на Францию, шагом успешным, но весьма дорогостоящим для них. Что касается самодовольных британцев, они спали крепким сном. Что бы ни говорили относительно Великобритании, ее полная неготовность и огромная опасность, которой она подвергла себя, предъявив ультиматум Германии, являются несомненным доказательством, что она не имела желания вступать в конфликт.

    Еще один факт, в равной степени очевидный, состоит в том, что Германия, не удовлетворенная частичной, даже если и бесспорной, победой, приняла решение в короткий срок последовательно расстроить Тройственный союз. Ее намерение диктовать условия мира сначала в Париже, затем в Петрограде и, наконец, в Лондоне было встречено не как военная необходимость, а как продуманная программа, в основе которой лежала абсолютная уверенность в превосходящей мощи ее вооружения. Но и на этом она не думала остановиться. Ее замысел простирался гораздо дальше — ее целью было не что иное, как мировое господство.

    Теперь это откровенно признают многие ее государственные деятели. Для большинства из нас такое предприятие представляется ошеломляющим по своей дерзости и размаху, тем более что для его осуществления предполагается применение силы. Но было бы ошибкой обвинять немцев в самомнении и высокомерии. Они убеждены в собственном превосходстве, и следует признать, что их попытка в какой-то степени правомерна.

    Часто возникает вопрос относительно того, пойдет ли наше дальнейшее развитие в направлении прекрасного искусства или полезной науки. Вывод неизбежен: искусство должно быть принесено в жертву науке. А если так, то рациональные немцы демонстрируют кратчайший путь к человечеству будущего. Славяне, которые сейчас на подъеме и пойдут своим путем, придадут свежий импульс созидательным и духовным усилиям, но и они будут вынуждены сосредоточиваться на необходимом и утилитарном. В итоге сложится сообщество тружеников.

    Германия потерпела неудачу в своих попытках. Хотя она еще не побеждена, ее военная кампания провалилась. Делается немало заявлений с целью объяснить внезапную остановку ее победоносных армий как по мановению волшебной палочки у самых стен Парижа, но представленные суждения носят спекулятивный характер и не имеют ничего общего с реальными физическими причинами. Эти причины, пожалуй, следует вкратце пояснить.

    Германская военная машина является попыткой заменить скопище произвольно соединенных, неуравновешенных и сомнительных частей компактной армией, перемещающейся по команде с точностью хронометра, подобно машине, невозмутимой, не боящейся опасности и смерти, идущей в бой как на парад. Эта концепция опирается на глубоко научный фундамент. Каждый человек бывает и храбрым и робким, но первое превалирует. Это очевидно, ибо жизнь, или существование, сама по себе есть борьба, полная риска и страдания, которые должно переживать с решимостью и стойкостью. Страх приходит от осознания враждебности окружающей среды и усугубляется разъединенностью.

    Когда много людей находятся в тесной близости, дружественное окружение и чувство объединенности вызывают отчетливо выраженный массовый психологический эффект, успокаивающий нервы и подавляющий врожденный страх и предчувствие беды. С другой стороны, постоянная и жесткая строевая подготовка, не прекращающаяся годы, кроме выработки точности и синхронности маневра, оказывает несомненное гипнотическое воздействие, которое еще более подавляет личную инициативу и нерешительность. В результате формируется сильная и жизнеспособная воинская часть, которая перемещается и действует, как агрегат, не допускающий свойственных человеку провалов и не имеющий дефектов, способный на максимальную работоспособность благодаря четко ориентированному и синхронному исполнению отдельных действий.

    Таково чудовищное средство, созданное Германией для продвижения своей культуры во всех направлениях и завоевания всего земного шара — бесчувственный автомат, дьявольское изобретение для безжалостного, массового истребления людей на научной основе; о чем-либо подобном прежде и не помышляли. Существует мнение, что это изобретение демонстрирует высочайшую эффективность, но в этом отношении оно не заслуживает признания, но более всего сами немцы. В самом деле, эта новейшая военная машина, задуманная как преобразователь энергии, варварски неэкономична.

    Она не только требует огромных денежных расходов и огромных усилий, когда простаивает, но заключает в себе коренную ошибку, которую военные журналисты не учитывают; суть в том, что условия, определяющие ее производительность и, следовательно, ее эффективность, в большой степени, если не полностью, контролируются противником. Действительно, именно непонимание этой истины привело к парижскому провалу.

    Первая из двух основных причин неудачи Германии лежит в превосходной оборонительной тактике французов, которые отказались занять боевую позицию для решающего сражения, помешав германской военной машине развернуть ее мощь в полной мере и принуждая ее действовать крайне неэффективно. Вторая, даже более существенная причина — излишняя спешка немцев, которые мчались на своей машине слишком быстро, тем самым значительно увеличивая потери и не получая адекватного выигрыша от продуманных тактических операций. Дай они себе больше времени, что, как показали последующие события, они вполне могли себе позволить, у них было бы больше сил в запасе, и задача, по всей вероятности, была бы успешно решена.

    Более всего поражает ставший известным факт, что в дипломатической сфере и в ходе германской кампании был допущен ряд вопиющих ошибок, сейчас таких очевидных, что никакие заявления в прессе не могут их скрыть. Это такое открытие, к которому мир оказался готов менее всего и которое ясно показывает, что немецкая эрудиция и техническая подготовка были достигнуты за счет знаний, основанных на интуиции, здравом смысле и изрядной рассудительности.

    Какой грубой ошибкой стало нарушение нейтралитета Бельгии, какое заблуждение уповать на то, что Англия допустит вторжение, такое опасное для ее существования, что Италия пожертвует своим флотом и торговлей, чтобы угодить альянсу! У немцев имелись замечательные пушки, способные разрушить фортификационные сооружения, и всё же, нападая на Францию, вместо кратчайшего маршрута они избрали окольный путь через Бельгию, теряя, таким образом, время и, кроме того, навлекая на себя новые опасности и осложнения. Десятки тысяч людей шли на верную смерть, тщетно штурмуя в боевых порядках форты, когда нескольких залпов из их пушек оказалось бы достаточно, чтобы сравнять форты с землей.

    Войска были выведены из Франции в менее значимые пункты в тот самый момент, когда их присутствие предвещало несомненную победу. Немцы могли бы осуществить марш-бросок на Варшаву и Петроград, прежде чем неприятель будет готов оказать действенное сопротивление, и всё же они отложили вторжение, пока русские не подтянули свои миллионные резервы. Они могли бы захватить Дюнкерк и Кале, не затрачивая больших усилий, и таким образом избежать ужасных потерь, которые эта задача, если она вообще осуществима, теперь обязательно повлечет. В настоящий момент они опрометчиво рискуют, проникнув далеко в глубь русской территории и воюя против превосходящих по численности сил, и именно в то время года, когда снежные бури могут отрезать коммуникации и оставить всю армию на милость врага.

    Какое объяснение может быть дано этим и другим странным ошибкам нации, для которой бережливость есть религия, которая, по общему признанию, опережает других, добиваясь успеха самым высоконаучным методом, идя по пути наименьшего сопротивления? Лишь одна причина может быть названа, та, которая вызвала падение многих империй! Это — самоуверенность и высокомерное пренебрежение по отношению к сопернику.

    Германия начала войну, слепо веря в наступление, которое не встречает противодействия. После страшного и ненужного жертвоприношения людьми и имуществом она узнала, что Франция может быть сильной и без Наполеона, что права свободолюбивых народов, например, бельгийцев и сербов, нельзя попирать безнаказанно, что Россия более не неуклюжий и беспомощный северный зверь. Она, в конце концов, осознала то, что она должна была знать сначала, что ее самый опасный враг — Англия. Она, возможно, устоит против армий на континенте, но с Великобританией, которая не подпускает ее к себе с моря и постепенно подавляет ее, задача становится неосуществимой.

    Победа над Антантой на западе, если она вообще достижима, ослабит ее до стадии риска: на востоке ситуация становится с каждым часом всё более безнадежной, Германия теряет десять тысяч человек и тратит семьдесят пять миллионов марок в день. Ее жизненные силы быстро убывают, в итоге она неизбежно потерпит поражение. Единственная возможность одержать победу — сокрушить Англию. Таким образом она освободится от смертельной хватки на своем горле и одержит победу над всеми своими врагами.

    Сейчас Фатерланд загорелся этой идеей и начал с энергией, доселе невиданной, новую кампанию, которая, если бы ее начать четырьмя месяцами ранее, могла бы покончить с войной до того, как развернулись полномасштабные боевые действия. Германия вступает в этот смертный бой не со спокойной осмотрительностью военной державы, но с неистовой решимостью нации, воодушевленной одним этим желанием. Стремясь к победе, она находится в зависимости не только от генералов, но от своих физиков, инженеров, изобретателей, химиков и техников, а также от волонтеров, которые выразят готовность пойти ради нее на муки.

    Она, возможно, будет совершать рейды и предпринимать ложные атаки, чтобы заманить противника, но у нее нет ни малейшего намерения дать бой британскому флоту в открытом сражении. Что она намеревается сделать, так это уничтожить его с помощью дьявольского средства и хитрых изобретений, не потеряв ни одного собственного корабля. Если только Англия незамедлительно не осознает грозящую ей опасность и не подготовится к тому, чтобы в схватке наука противостояла науке, мастерство мастерству и решимость идти до конца такой же решимости, то следующие несколько месяцев могут быть критическими для ее господства как главной морской державы. Тот факт, что правила, принятые в Гааге, не способны предотвратить использование адских устройств, уже доказан. Международные соглашения бывают двух типов и могут быть классифицированы относительно двух определений, а именно: «В единении сила» и «Всё зависит от обстоятельств». Гаагские постановления относятся к последнему типу.

    Те, кто хотел бы отмести вышеизложенные суждения как в высшей степени неправдоподобные, если не абсурдные, должны помнить, что великий народ, лидирующий в области технических достижений, ведет борьбу за свое существование и что способность к изобретательству уже воплотилась в средство, с помощью которого можно уничтожить флот, в то же время в научных исследованиях за последние годы намечаются новые направления. Всем хочется узнать ответ на вопрос, какие методы и хитроумные изобретения Германия предполагает применить, осуществляя свой коварный ход, и каким образом можно противостоять ее попыткам и свести их на нет.

    Перед Германией открываются четыре пути для осуществления нападения на Англию. Во-первых, осуществить вторжение мощными силами, игнорируя британский флот; во-вторых, бросить вызов британскому флоту в открытом бою; в-третьих, последовательно уничтожать и ослаблять флот с помощью механизмов иного типа, чем пушки; и в-четвертых, проводить воздушные атаки на суше и на море.

    История знает множество примеров дерзких завоеваний. Возможно, мы станем свидетелями самого удивительного из всех. Британские острова подвергались оккупации и раньше, но это было во времена примитивных вооружений. Правда, с тех пор средства защиты были значительно усовершенствованы, но это в большой степени компенсируется соответственно возросшими возможностями наступательных вооружений. Достичь этого трудно, но не невозможно.

    Однако стратегия, думается, не сыграет никакой роли в осуществлении этого трудного дела. Оно напоминает ситуацию Ганнибала, совершавшего переход через Альпы, — это проблема преодоления естественных препятствий. Англия имеет небольшую береговую линию, пригодную для высадки, и многие участки скорее всего хорошо охраняются и укреплены. Если немцы задумают осуществить вторжение, оно должно быть молниеносным. Они предпримут его средь бела дня и в своей излюбленной манере идти напролом, преодолевая препятствия и не считаясь с потерями. Их отчаянные попытки взять под контроль побережье свидетельствуют со всей очевидностью, что это и есть их намерение.

    Многие специалисты придерживаются мнения, что до тех пор, пока существует непобедимый британский флот, об операции такого рода не может быть и речи, но это заблуждение. Нет сомнений, что немцы могут создать зону своего контроля в проливе, защищенную с флангов непроходимыми минными полями и подводными лодками. Более того, захват Кале, хотя это и давало бы им огромное преимущество, не является абсолютно необходимым для осуществления их намерения.

    Каков бы ни был план, это будет произведение инженерного искусства, просчитанное во всех деталях с немецкой скрупулезностью. Вот почему нельзя оказывать никакого доверия неубедительному плану, который был описан в некоторых газетах. На данный момент не раскрыто ни одного приемлемого плана, но я считаю, что прав в своих предположениях, утверждая, что немцы рассчитывают применить специально для этого предназначенную плавучую крепость, которая, разобранная на части, будет перевезена по железной дороге.

    Они станут практически неуязвимыми для торпедных и артиллерийских атак и будут вооружены крупнокалиберными пушками огромной разрушительной силы, созданными именно для этой цели. Под защитой этих крепостей, которые полностью очистят побережье, должна быть проведена высадка артиллерии и орудийных расчетов, в то время как пехотные части могут быть переброшены по воздуху, при этом последняя операция проводится под покровом темноты. Располагая пушками меньшего калибра, не будучи в достаточной степени подготовленными, британцам будет трудно отразить эту попытку.

    Не лишено некоторого основания и то мнение, что немцы, возможно, отважатся на крупномасштабное морское сражение. У них меньшее количество судов, но большая их часть совершенно нового типа, и, вне сомнений, каждый корабль абсолютно исправен. Все донесения подтверждают, что их пушки превосходят пушки британцев и по калибру, и по износостойкости. Немцы являются специалистами в производстве и обработке жаростойких материалов, и многие технические отрасли в других странах полностью зависят от их продукции. Если к этому преимуществу мы добавим возможности, которые дают мины, торпеды, подводные лодки, цеппелины и другие средства уничтожения, искусный маневр и момент неожиданности, численное неравенство флота становится вопросом второстепенной важности.

    Удивительный подвиг небольшой немецкой субмарины, которая потопила четыре британских крейсера и ушла неповрежденной, вполне убедителен для вывода: предстоящий поединок двух стран будет решаться не одними пушками и броней, которые до этого времени считались наиважнейшими в море. И всё же все потенциальные возможности морских судов такого рода ждут своего раскрытия.

    Германия всегда была склонна превзойти другие страны. Большинство изобретений, появившихся где-либо в другом месте, улучшены немцами. Но дело не только в этом, а в том, что они работают, чтобы произвести впечатление, понимая, что удивить — значит поразить, поразить — значит победить. Весьма вероятно, что они разработали нечто новое в подводных лодках и, возможно, решили особо важную проблему, стоящую сейчас перед ними, — истреблять линейные корабли в охраняемых гаванях.

    Это можно осуществить с помощью небольших судов упрощенной конструкции, которые будут в сущности не чем иным, как торпедами с экипажем из одного или двух операторов-добровольцев. Водоизмещение не должно превышать пять тонн, так что два или три судна, если не больше, можно спустить на воду из цеппелина в подходящих пунктах ночью. Такие аппараты, управляемые решительными людьми, будут представлять собой новую грозу морей, от которой трудно уберечься.

    Британцам вообще будет очень трудно эффективно противостоять грозным подводным лодкам. С дирижаблем и аэростатом можно вести бой на таком же летательном аппарате, но под водой этот способ неприменим, и необходимо иметь специальный усовершенствованный корабль. Линейные корабли могли бы отбивать атаки подводных лодок с помощью небольших артиллерийских снарядов, наполненных взрывчатым веществом и выпускаемых с очень большой скоростью, с тем чтобы создать ударную волну огромной силы. Могут также применяться миниатюрные мины, сконструированные таким образом, чтобы они могли удерживаться на определенной глубине и взрываться при соприкосновении. Они не причинят никакого вреда большому надводному кораблю, но смогут обнаружить подводную лодку и нанести повреждение ее чувствительному механизму, который легко вывести из строя.

    Следующим после огнестрельного оружия наиболее действенным средством ведения войны является дирижабль типа цеппелин, по крайней мере они так считают. Его разработка потребовала преодоления множества трудностей. Был усовершенствован процесс дешевого производства чистого водорода, был получен удивительно прочный и легкий сплав, были построены соответствующие требованиям и высокоэкономичные двигатели и был успешно решен ряд других технических проблем. Хотя здесь и не проявилось большой оригинальности, но это ощутимый прогресс, такой, какой мог быть достигнут только в Германии. Много было сказано и восторженного и пренебрежительного о цеппелине, что делает необходимым отделить зерна от плевел, прежде чем высказать мнение относительно его достоинств.

    Заявлена претензия на новый, недавно открытый невоспламеняющийся газ, применение которого в два с половиной раза увеличивает грузоподъемность судна. Такое претенциозное заявление сделано на том лишь основании, что, согласно Периодической системе элементов, разработанной великим русским ученым Менделеевым, открывшим безошибочный принцип в химических исследованиях, должен быть газ с атомным весом 04. В какой-то мере его наличие обнаружено в солнечной короне — отсюда и название корониум, а также в северном сиянии, и в этом случае говорят о его земном происхождении и называют геокорониумом.

    Чтобы судить о том, как Германия может использовать свой воздушный флот, необходимо точно подсчитать его величину. До объявления войны она располагала тридцатью шестью летательными аппаратами, различными по величине, и возможностью производства их от восьми до десяти ежемесячно. Но в условиях войны эта норма, возможно, значительно возросла бы. Машины прошли экспериментальную стадию, и теперь это только вопрос производства. С учетом ситуации не будет неожиданностью обнаружить, что к этому времени их уже построено около сотни или более того. При производстве в большом количестве стоимость каждой машины не превысит 125 000 долларов. А это означает, что можно построить сотню машин за цену, равную стоимости одного-единственного дредноута.

    До сих пор грузоподъемность определялась на основании веса пассажиров, но для военных целей она могла значительно возрасти, а в новейшем типе судов, возможно, достигнет двадцати тонн. Такое воздушное судно могло бы перевезти 200 человек с полным снаряжением, а флотилия из 100 судов могла бы высадить 20 000 человек за одну операцию.

    Возможности нанесения повреждений взрывчатыми веществами существенны, тем более что это можно сделать ничем не рискуя. Оснащенный надлежащими приборами, цеппелин может плыть в воздухе в полной безопасности на большой высоте, находить в полной темноте точное место для атаки, ориентируясь на сигналы двух радиостанций, сбросить многие тонны пикриновой смеси и повторить это снова и снова.

    Некоторые эксперты высказались пренебрежительно в отношении разрушительного действия, но дело в том, что взрыв трех тонн динамита вызывает колебания почвы, ощутимые на расстоянии тридцати миль. Если сбросить десять тонн традиционного взрывчатого вещества в центр большого города, были бы убиты тысячи людей и уничтожено имущество на сотни миллионов. Допустим, что флотилия из ста таких воздушных судов могла бы пролететь над Европой ночью, сбросив 100 000 двадцатифунтовых бомб. Кто может оценить ущерб и степень деморализации, которые последуют?

    В начале войны появилось сообщение, что немцы изобрели снаряд, ядовитые газы которого обладают огромной разрушительной силой. Вскоре после этого стало известно, что во Франции получено замечательное взрывчатое вещество, названное турпинит. Первое сообщение пришло от военных, и по этой причине сообщению было придано определенное значение, а также потому, что авторство этого открытия приписывалось Эжену Турпину, искусному и плодовитому изобретателю химикатов.

    Идея применения ядовитых и вызывающих удушье бомб не нова, официально признано, что несколько таких бомб было, действительно, применено во время второй осады Парижа против версальцев, единственным результатом чего была гибель специалиста, который заряжал их. Существует естественное и глубоко укоренившееся предубеждение против применения ядовитых веществ в боевых действиях, и многие из тех, кто допускает применение современных методов истребления людей, отказались бы от них. Ведь смерть от многих известных ядов менее мучительная и обезображивающая.

    При отсутствии доказанных фактов я попытаюсь вкратце объяснить, как можно в огромной степени увеличить эффективность таких средств. Во-первых, представьте большой снаряд, который, ударяясь о землю, высвобождает ядовитый газ, имеющий плотность атмосферы и распространяющийся в виде полусферы, и пусть радиус действия будет равен 1 000 футов. Теперь вообразите, что эквивалентный заряд разделен на миллион частей, помещенных во множество мелких снарядов, которые могут быть рассеяны над большой площадью. Далее, поскольку объем газа будет тот же, радиус действия каждого снаряда составит десять футов, а их совокупное поражающее действие будет в 100 раз сильнее, чем у большого снаряда; действительно, это тем более так, поскольку распространение газа не будет одинаковым. Ясно, что секрет заключается в применении чрезвычайно малых снарядов в больших количествах.

    Тот же логический ход мысли приводит к заключению, что путем применения мелких реактивных снарядов из вольфрама, обработанных погружением в кураре или подобный яд, парализующий сердце или двигательную функцию, будет обретено средство ведения боевых действий более гуманное, чем существующие ныне, и несравнимо более эффективное. Окончательная революция в наступательных методах может быть осуществлена в результате применения токсинов и удушающих веществ тяжелее воздуха. Это можно проиллюстрировать на примере.

    Предположим, что десять тонн такого сжиженного газа сброшено на поле боя с воздушного судна. После испарения газа над поверхностью земли образуется газовый покров, действенная высота слоя которого может достигать десяти футов. Если десять кубических футов газа весят один фунт, тогда десять тонн составят 200 000 кубических футов газа, который может быть в той или иной степени разбавлен в зависимости от его отравляющего действия. Допустим, что он не более ядовит, чем угарный газ, который губителен, если его содержание в атмосфере составляет половину одного процента. Это означает, что в газовом слое будет содержаться 40 000 000 кубических футов, а при высоте в десять футов он покроет площадь в 4 000 000 квадратных футов, или приблизительно 100 акров. В густонаселенном городе с его сооружениями и другими объектами зона поражения может быть очень обширной.

    Это достаточно большая опасность, но если применить отравляющий газ, равный по смертоносному действию синильной кислоте, аконитину или самому сильнодействующему из известных ядов, псевдоаконитину, зона разрушения была бы в сто раз больше. В таком случае очевидно, что в перспективе химик, несущий ответственность за войну, возможно, найдет средство достижения ее быстрого завершения.

    Телемеханика — термин, предложенный для системы радиоуправления функциями, в том числе поступательными перемещениями самодвижущегося автомата. Пятнадцать лет тому назад я впервые продемонстрировал ее применение, и результаты были восприняты с таким интересом, который вызывают лишь немногие изобретения. Мои опыты затем повторены в Германии и других странах, но за счет того, что применялись волны Герца и плохо настроенные контуры, у многих создалось впечатление, что управление аппаратом на таком большом расстоянии все-таки не вполне надежное.

    Был выдвинут еще один аргумент, что если бы оно оказалось надежным, всегда нашлись бы добровольцы, готовые на жертву и заслуживающие большего доверия по причине их способности быстро осмысливать и принимать решения, которой не обладают неодушевленные машины. Этого мнения придерживаются те, кто сейчас пропагандирует применение пилотируемых воздушных торпед, но ничего более ошибочного невозможно вообразить. Судно без экипажа, управляемое соответствующим радиоустройством, во всех отношениях лучше в качестве средства нападения.

    В Германии сейчас производят крупнокалиберные пушки, такие дорогие и недолговечные, что только один выстрел из них стоит кругленькую сумму. А ведь можно было бы производить за меньшую цену авиационную торпеду с дистанционным управлением с гораздо большим радиусом действия и большим разрушительным эффектом, которая всегда будет попадать в намеченную цель и полностью избавит от необходимости применять пушки.

    Этот новый подход можно также применить в отношении подводной лодки и в особенности для управления с большой высоты; он позволит применить наиболее совершенное средство береговой защиты из тех, что на этот момент изобретены. Но его возможности будут оценены в полной мере тогда, когда станет повсеместным применение определенных электрических волн, на которые Земля резонирует. Тогда будет реально отправить катер или аэростат без экипажа на расстояние в сотни миль для высвобождения заключенной в снаряде энергии в любой желаемой точке на карте.

    Многие из современных средств и методов выйдут тогда из употребления. Весьма вероятно, что, если эта война затянется, это открытие докажет свою значимость. Последние сообщения дают понять, что в Германии проводятся эксперименты с торпедами дистанционного управления, сбрасываемыми с аэростатов.

    Одним полезным итогом этого страшного потрясения будет долгий период мира. Таково естественное следствие закона о равенстве действия и противодействия. Но на современной фазе развития человечества случающиеся время от времени потрясения в порядке вещей. Возможно, начнется еще более жестокая битва, это будет битва объединившихся народов Востока и Запада.

    Пока существуют различные национальности, будет жив и патриотизм. Это чувство должно быть вырвано с корнем из наших сердец прежде, чем мы сможем установить прочный мир. Оно должно уступить место любви к природе и научному поиску. Познания и открытия — те великие силы, которые проложат путь к достижению этой цели.

    Я всего лишь сообщил об изобретении, которое покажет электротехникам, как получать огромные электрические напряжения и энергии. При их посредстве будет достигнуто немало замечательных результатов. Голос человека и его изображение будут передаваться по всему земному шару без проводов, энергия будет посылаться сквозь пространство, океанские просторы станут безопасными для судоходства, транспорт будет оснащен современным оборудованием, дождь будет выпадать по потребности и, возможно, будет разблокирован неисчерпаемый запас атомной энергии.

    Достижения такого рода в грядущие времена устранят физические причины войны, главная из которых — безбрежные пространства нашей планеты. Постепенное сокращение расстояния сблизит людей и внесет гармонию в их взгляды и устремления. Овладение силами природы избавит от страданий и нужды и предоставит достаточные средства для безопасного и удобного существования.

    Однако для полного триумфа человеческого духа будет недоставать еще одного достижения. Необходимо найти способ передачи мысли и таким образом сделать возможным точное приведение всех форм человеческих усилий к общему эквиваленту. Эта задача имеет решение.

    Результаты такого прогресса непредсказуемы. Они ознаменуют новую эпоху в истории человечества, и произойдет поразительная революция в нравственном, социальном и других аспектах, неисчислимые причины несчастий будут устранены, наша жизнь коренным образом изменится в лучшую сторону, и будет заложен иной прочный фундамент всему, что содействует миру.

    «The Sun», 20 декабря 1914 г.

    48

    Электричество чудесным образом преобразит мир

    Желающий составить верное представление о нашей великой эпохе должен изучить историю развития электричества. И здесь он откроет для себя сюжет, куда более поразительный, чем любая из сказок «Тысячи и одной ночи». История электричества началась задолго до Рождества Христова, когда Фалес, Феофраст и Плиний возвестили о сверхъестественных свойствах электрона — одном из замечательнейших элементов вещества, называемого нами янтарем, который образовался, если верить легенде, из чистых слез Гелиад, сестер Фаэтона, несчастного юноши, который попытался промчаться на огненной колеснице бога солнца и едва не сжег землю. Живое воображение греков, вполне понятно, объяснило эти загадочные проявления сверхъестественными причинами, наделив янтарь душой и придав ему человеческие черты.

    Была ли это, действительно, вера или поэтическая интерпретация, остается вопросом. Но именно в наши дни в научной среде бытует мнение, что кристалл есть живая сущность, и этот взгляд начал распространяться на весь материальный мир после того, как профессор Джагадис Боуз продемонстрировал серию удивительных экспериментов и доказал, что неодушевленная материя реагирует на раздражители точно так же, как растительное волокно и животная ткань. Примером может послужить жемчужина, которая вырастает более блестящей и красивой, соприкасаясь с теплом человеческого тела.

    Следовательно, суеверие древних, если оно вообще имело место, не может считаться заслуживающим доверия доказательством их невежества, но насколько они были осведомлены об электричестве, можно только предполагать. Хотя известен любопытный факт: в терапии использовали луч электрического ската. На некоторых старинных монетах видны двойные звезды, или искровые разряды, такие, какие можно получать от гальванической батареи. Письменные источники, хотя и скудные, приводят нас к убеждению, что по крайней мере некоторые посвященные обладали более глубокими познаниями о феномене янтаря. Можно вспомнить Моисея, несомненно, истинного и искусного электротехника, намного опередившего свое время. В Библии точно и подробно описываются устройства, в которых в результате трения воздуха о шелковые шторки генерировалось электричество и накапливалось в емкости, конструктивно напоминающей конденсатор. С большой вероятностью можно допустить, что сыновья Аарона были убиты высоковольтным разрядом и что священные огни римлян были электрическими. Инженерам той эпохи был, должно быть, известен ремённый привод, и нельзя не заметить, что широкомасштабные разработки в области статического электричества не были обойдены их вниманием. При благоприятных атмосферных условиях приводной ремень можно преобразовать в динамический генератор, способный производить немало поразительных действий. Я зажигал лампы накаливания, заставлял работать двигатели и проводил бесчисленное множество других столь же интересных экспериментов, используя электричество, полученное от приводных ремней и аккумулированное в оловянных банках.

    Можно с уверенностью заключить, что уже в давние времена алхимики обладали знанием о многих явлениях, связанных с таинственной силой. Удивительно лишь то, почему должны были пройти многие тысячелетия, прежде чем Уильям Гильберт опубликовал в 1 600 году свой знаменитый труд, первый научный трактат по электричеству и магнетизму. В какой-то мере продолжительность этого непродуктивного периода объяснима. Учение являлось привилегией немногих, и вся информация ревностно оберегалась. Связь осуществлялась с трудом и медленно, и было нелегко достичь взаимопонимания между исследователями, разделенными большими расстояниями. К тому же люди в те времена не помышляли о практической стороне дела, они жили и трудились ради отвлеченных понятий, отстаивали убеждения, хранили традиции и идеалы. Человеческая природа мало изменилась ко времени Гильберта, но его четкая доктрина оказала сильное воздействие на ученые умы. За короткое время одна за другой были созданы фрикционные машины и проведено множество экспериментов и исследований. Страх и суеверие постепенно уступили место научной проницательности, и в 1745 году мир потрясло известие, что Клейст и Лейден добились успеха, заключив опасный реагент в сосуд, из которого он вырывался с резким звуком и разрушительной силой. Так родился конденсатор, возможно, самый замечательный электрический аппарат, из когда-либо изобретенных.

    Два чрезвычайно больших скачка произошли в последовавшие за этим 40 лет. Первый, когда Франклин доказал тождественность тонкой сущности янтаря и внушающих благоговейный ужас стрел Юпитера; второй, когда Гальвани и Вольта предъявили миру контактные и химические аккумуляторы, из которых можно было извлекать магические флюиды в неограниченных количествах. Следующие 40 лет принесли еще более значительные результаты. Эрстед сделал существенный шаг вперед, заставив магнитную стрелку отклоняться под воздействием электрического тока. Араго создал электромагнит, Зеебек — термоэлектрическую батарею, в 1831 году венцом серии научных достижений явилось открытие Фарадеем электромагнитной индукции, положив начало принципу работы замечательного механизма — динамо-машины и ознаменовав начало новой эры и в научных исследованиях, и в практическом применении их результатов.

    С этого времени изобретения, имеющие не поддающееся оценке значение, следовали одно за другим с приводящей в замешательство быстротой. Были созданы телеграф, телефон, фонограф и лампа накаливания, индукционный двигатель, резонансный трансформатор; были открыты рентгеновские лучи, радий, появился беспроволочный телеграф; эти и другие многочисленные достижения привели к коренным изменениям в науке и технике и в значительной степени улучшили условия жизни. За истекшие с тех пор 84 года таинственные силы, обитающие в природном янтаре и магнитном железняке, трансформировались в исполинские энергии, вращающие маховик эволюции человеческого сообщества со всё возрастающей скоростью. Такова, в немногих словах, волшебная повесть об электричестве от Фалеса до наших дней. Невозможное свершилось, самые фантастические мечты оказались превзойденными, а изумленный мир задается вопросом: а дальше что?

    Электрические возможности угля и железа

    Многие из потенциальных первооткрывателей, потерпев неудачу в своих исканиях, испытывают чувство сожаления, что они родились в то время, когда всё уже свершилось и не осталось ничего, что можно сделать. Это ошибочное представление о том, что, в то время как мы успешно продвигаемся вперед, перспективы в сфере изобретательства иссякли, встречается довольно часто. В действительности всё обстоит как раз наоборот. Спенсер высказал верную мысль, когда уподобил культуру кругу света, который создает лампа в темном пространстве. Чем ярче лампа и чем больше световой круг, тем резче грань, отделяющая его от тьмы. Это прозвучит парадоксально, но тем не менее верно: чем больше мы знаем, тем более несведущими в абсолютном смысле мы становимся, ибо только через просвещение мы осознаём ограниченность наших знаний. Именно одним из наиболее обнадеживающих результатов эволюции в области мысли является факт постоянного раскрытия новых и еще более грандиозных перспектив. Мы идем вперед потрясающе быстрым шагом, но дело в том, что даже в наиболее успешно разрабатываемых областях сделаны лишь первые шаги. Всё, что до сих пор достигнуто благодаря электричеству, — пустяк по сравнению с тем, что хранит в себе будущее. Но дело не только в этом, в настоящее время бесчисленное множество изделий производится устаревшими способами, которые в экономичности, удобстве и во многих других отношениях значительно уступают новому методу. Преимущества последнего столь велики, что, как только открывается возможность, инженер советует своему заказчику «сделать это с помощью электричества».

    Рассмотрим, для примера, одну из крупнейших отраслей промышленности — угольную. Из этого ценного минерала мы прежде всего извлекаем скрытую в нем солнечную энергию, необходимую для удовлетворения потребностей в промышленности и коммерции. Согласно статистическим данным, добыча угля в Соединённых Штатах за прошедший год составила 480 000 000 тонн. При условии применения совершенных машин этого топлива было бы достаточно для стабильной выработки энергии в 500 000 000 лошадиных сил в течение года, но расточительство столь безответственно велико, что мы в среднем получаем не более 5 процентов от его энергетической ценности. Огромные потери происходят в процессе добычи, при погрузке, транспортировке, складировании и использовании угля, которые можно было бы весьма значительно уменьшить, если применить универсальный электрический способ для всех этих операций. Рыночную ценность годового продукта можно было бы без труда удвоить и добавить колоссальную сумму к доходам страны. Более того, уголь худшего качества, миллиарды тонн которого выбрасываются, можно было бы использовать с выгодой.

    Подобное происходит в газовой и нефтяной отраслях, ежегодные убытки здесь достигают сотен миллионов долларов. В ближайшем будущем потери такого рода будут считаться преступлением, а владельцев такого имущества будут принуждать к внедрению новых методов. Вот здесь-то и открывается бескрайнее поле для широкого применения электричества в самых разных отраслях промышленности, которые обязательно претерпят коренные преобразования, благодаря его интенсивному внедрению.

    В качестве еще одного примера я могу упомянуть производство чугуна и стали, которое осуществляется в США в поистине колоссальных масштабах. В течение прошлого года, несмотря на неблагоприятную деловую конъюнктуру, было произведено 31 000 000 тонн стали. Подробное описание перспектив усовершенствования процесса производства как такового уведет нас слишком далеко, и я лишь кратко обозначу, как, по всей вероятности, можно усовершенствовать процесс использования отходящих газов коксовых и доменных печей, чтобы генерировать электричество для промышленных нужд.

    Поскольку на производство каждой тонны чугуна используется одна тонна кокса, его годовой расход может составить 31 000 000 тонн. Выход газа в процессе горения в доменных печах составляет 7 000 000 кубических футов в минуту с тепловым эквивалентом 110 британских тепловых единиц на кубический фут. От общего количества газа 4 000 000 кубических футов возможно использовать без дополнительных затрат для получения энергии. Если бы вся тепловая энергия этого года могла быть трансформирована в механическое усилие, ее мощность составила бы 10 389 000 лошадиных сил. Такого результата добиться невозможно, но абсолютно реально получить 2 500 000 лошадиных сил электрической энергии на выходах динамо-машин.

    При производстве кокса выделяется приблизительно 9 400 кубических футов газа на тонну угля. Этот газ является превосходным средством для получения энергии, так как его тепловой эквивалент составляет в среднем 600 британских тепловых единиц, но в двигателях его в настоящее время используют очень мало, большей частью по причине высокой стоимости и других несовершенств. Тонна кокса требует около 1,32 тонны американского угля, следовательно, суммарное годовое потребление угля на вышеупомянутых основных условиях составляет почти 41 000 000 тонн, что дает 733 000 кубических фута газа в минуту. Допустим, что выход излишка, или обильного газа, достигнет 333 000 кубических футов, тогда оставшиеся 400 000 кубических футов можно использовать в газовых двигателях. Теоретически этого теплосодержания могло бы хватить для выработки 5 660 000 лошадиных сил, из которых 1 500 000 лошадиных сил можно было бы получить в виде электрической энергии.

    Я уделил много внимания этой промышленной проблеме и считаю, что применение новейших, эффективных, чрезвычайно дешевых и простых термодинамических преобразователей позволит вырабатывать в электрических генераторах не менее 4 000 000 лошадиных сил путем утилизации тепловой энергии этих газов, которые, если не полностью идут в отходы, используются лишь частично и неэффективно.

    Планомерное совершенствование и доводка смогут гарантировать гораздо лучшие результаты и получение годового дохода 50 000 000 или более долларов. Электрическую энергию можно рентабельно использовать для связывания атмосферного азота и производства удобрений, потребность в которых чрезвычайно велика и производство которых в нашей стране ограничено по причине высокой стоимости энергии. Я с уверенностью в успехе рассчитываю на практическое осуществление этого проекта в ближайшем будущем и надеюсь на исключительно быстрое внедрение электричества в этой области.

    Получение гидроэлектрической энергии

    Энергия воды открывает огромные возможности для применения электричества, особенно в области электрохимии. Использование водопадов в качестве источников электроэнергии является наиболее экономичным способом из тех, которые позволяют черпать энергию Солнца. Это объясняется тем, что и вода, и электричество несжимаемы. Общий коэффициент полезного действия гидроэлектрического процесса может доходить до 85 процентов. Первоначальные затраты в большинстве случаев огромны, но расходы на содержание и техническое обслуживание невелики, а предполагаемая выгода идеальна. Моя установка переменного тока продолжает стабильно работать, и к настоящему времени она выработала около 7 000 000 лошадиных сил. Как это обычно происходит, мы получаем не более шести сотых одной лошадиной силы на тонну угля в год. Отсюда следует, что эта гидроэнергия эквивалентна той, которую можно получить от годового потребления 120 000 000 тонн угля, что составляет 25 процентов от общей добычи в Соединённых Штатах. Эта оценка занижена, и, принимая во внимание колоссальные потери угля, вероятно, ближе к истине будет допустить 50 процентов.

    Мы получим более точное представление о потрясающем значении энергии для нашего экономического развития, если вспомним, что, в отличие от топлива, которое требует громадных затрат человеческой энергии и не возобновляется, она легко восполняется, не расходуя сырья, и соответствует механической работе 150 000 000 человек, что в полтора раза превышает всё население нашей страны. Эти цифры производят сильное впечатление; как бы то ни было, мы только начали использовать этот неисчерпаемый ресурс, доступный всему сообществу.

    В настоящее время есть два основных лимитирующих момента: один состоит в осуществлении доступа к источнику энергии, второй — в передаче энергии на расстояние. В теории энергия падающей воды огромна. Если предположить, что в среднем дождевые облака находятся на высоте 15 000 футов, а годовое количество осадков составляет 33 дюйма, то суточная энергия, приходящаяся на одну квадратную милю, превысит 4 000 лошадиных сил, а для всей территории Штатов она составит более 12 000 000 000 лошадиных сил. В действительности же большая часть потенциальной энергии уходит на трение о воздух. Это, хотя и вызывает разочарование у экономистов, является благоприятным обстоятельством, ибо, не будь трения, капли падали бы на землю со скоростью 800 футов в секунду, а этого хватило бы, чтобы вызвать появление волдырей на теле человека, в то же время град был бы определенно смертельным. Большая часть воды, доступная для получения энергии, падает с высоты около 2 000 футов, что дает более полутора миллиардов лошадиных сил, но мы умеем использовать падение воды лишь с высоты, допустим, 100 футов, а это означает, если бы вся энергия падающей воды в нашей стране при существующих условиях использовалась в качестве источника электроэнергии, было бы получено лишь 80 000 000 лошадиных сил.

    Следующее замечательное достижение — управление атмосферными осадками с помощью электричества

    А ведь недалеко то время, когда мы будем полностью регулировать выпадение атмосферных осадков, и это даст возможность извлекать неограниченное количество воды из океанов, получать любое желаемое количество энергии и совершенно преобразить земной шар, применяя ирригацию и используя методы интенсивного земледелия. Едва ли возможно представить себе нечто более значительное, что может быть достигнуто человечеством посредством электричества.

    Существующие в настоящее время ограничения в передаче энергии на расстояние будут преодолены двумя способами: путем применения подземных, энергетически изолированных проводников и путем внедрения беспроводной технологии. Первый проект я предлагал несколько лет тому назад. В основу был положен принцип передачи водорода по полому проводнику при очень низкой температуре окружающего вещества и обеспечения, таким образом, идеальной изоляции, косвенно используя электрическую энергию. Таким образом, энергия, полученная от водопада, может передаваться на расстояния в сотни миль при максимальной экономичности и небольших затратах. Это новшество, несомненно, в значительной степени расширит область применения электричества. Что касается беспроводного способа, могу сказать, что теперь мы имеем средство экономичной передачи энергии в любом желаемом количестве и на расстояния, ограниченные лишь размерами планеты. В связи с утверждениями некоторых введенных в заблуждение экспертов, что в беспроводной установке, которую я создал, энергия передатчика рассеивается по всем направлениям, я хотел бы с особой категоричностью заявить, что ничего подобного не происходит. Энергия идет только туда, где она требуется, и никуда больше.

    Когда эти прогрессивные идеи будут воплощены, мы в полной мере ощутим преимущества энергии воды, и она станет нашим главным источником электроснабжения для бытовых, общественных и других нужд в процессе мирного созидания и в ходе военных действий.

    Экономия энергии в освещении и в электродвигателях

    Внедрение различных новейших устройств, которые можно подключать к цепи в нужное время с целью выравнивания нагрузок и увеличения доходов от электростанций, открывает для крупных подразделений, ведающих электрическим освещением и энергоснабжением, безграничные возможности. Я сам видел несколько приборов такого рода. Наиболее значительным из них является, вероятно, электрический ледогенератор, который полностью избавлен от применения опасных и во всех отношениях нежелательных химикатов. Новое устройство не потребует абсолютно никакого ухода и будет чрезвычайно экономичным в эксплуатации, так что процесс охлаждения будет весьма недорогим и удобным для применения в каждом доме.

    Построен занятный фонтан, работающий от электричества. Такого рода фонтаны будут, весьма вероятно, устанавливать повсеместно; это будет необычная и доставляющая удовольствие достопримечательность на площадях, в парках, отелях и жилых кварталах.

    Планируется создание многоцелевых бытовых приборов для приготовления пищи, и в этой сфере имеется большой спрос на практические разработки и предложения. То же самое можно утверждать в отношении электрических вывесок и других привлекательных средств в рекламе, которые могут работать на электричестве. Некоторые из полезных проектов, которые можно осуществить, используя электрические токи, удивительно интересны и вполне могут быть представлены на выставках. Нет сомнений, что в этом направлении можно сделать многое. Театры, общественные здания и жилые дома нуждаются в огромном количестве приспособлений для создания нормальной среды обитания, тем самым открываются широкие перспективы для искусного и прагматичного изобретателя.

    Огромной и абсолютно неисследованной областью является использование электричества для приведения в движение судов. Ведущая электрическая компания США оснастила большое судно быстроходными гидротурбинами и электрическими моторами и добилась поразительного успеха. Случаи применения таких новшеств будут множиться в нарастающем темпе, ибо преимущества электрического привода очевидны теперь для всех. В этом контексте гироскопический прибор будет, вероятно, играть важную роль, так как его широкое освоение на судах обязательно осуществится. Пока еще очень мало сделано для внедрения электрического привода в различных отраслях экономики и производства, а перспективы здесь безграничны.

    Некоторые чудеса станут явью

    Уже написаны книги о применении электричества в сельском хозяйстве, но дело в том, что на практике почти ничего не сделано. Благотворные последствия применения электричества высокого напряжения доказаны со всей очевидностью, и повсеместное освоение сельскохозяйственных электрических машин приведет к революции. Защита лесов от пожаров, уничтожение микробов, насекомых и грызунов будут со временем осуществляться с помощью электрических устройств.

    В недалеком будущем мы будем свидетелями самого широкого применения электричества, направленного на безопасное существование человека. Мы будем иметь в своем распоряжении электрические приборы, обеспечивающие безопасное плавание судов в море, предотвращающие, к примеру, столкновения, сможем даже рассеивать туманы с помощью электрической энергии и мощных лучей, обладающих проникающей способностью. Я питаю надежду на то, что в течение ближайших нескольких лет будут смонтированы беспроводные энергоблоки для обнаружения в океане цели с помощью радиолокации. Этот проект вполне реален и, будучи осуществленным, внесет бoльший вклад, чем любое другое средство обеспечения безопасности имущества и человеческой жизни в море. Такая же установка могла бы производить стационарные электрические волны и позволила бы судам в любое время получать точные координаты и другие полезные практические сведения, не прибегая к применяемым сейчас средствам. Ее можно также использовать для передачи сигнала времени и для многих других целей подобного характера.

    Медицина — еще одна широчайшая область с безграничными возможностями применения электричества. Особенно большое будущее у токов высокой частоты. Наступит время, когда этот вид электрической энергии придет в каждый дом. Я вполне допускаю, что через их поверхностные воздействия мы сможем отказаться от привычного купания в ванне, так как помыть тело можно будет мгновенно просто путем подключения его к источнику тока, то есть к электрической энергии очень высокого напряжения, в результате чего от кожи отпадет налипшая на нее пыль и все другие мелкие частицы. Такая сухая ванна, кроме того, что она удобна и экономна по времени, окажет также благотворное терапевтическое воздействие. Появятся небывалые ранее электрические приборы для глухих и слепых, и это будет благом для страдающих людей.

    Электрические приборы станут вскоре существенным фактором в предупреждении преступлений. В судопроизводстве доказательство, полученное с помощью электричества, зачастую будет решающим. Недалеко то время, когда будет возможно мгновенно передать мысленный образ на экран и сделать его видимым в любом желаемом месте. Осуществление этого метода чтения мыслей произведет коренные перемены к лучшему во всех сферах повседневной жизни общества. Правда, ловкие правонарушители будут, к сожалению, использовать эти преимущества в собственных интересах для продолжения своего гнусного дела.

    Телеграфическая фотография и другие достижения

    Значительные усовершенствования станут возможными в телеграфии и телефонии. Применение нового приемного устройства, которое будет в скором времени представлено и чувствительность которого может возрастать почти неограниченно, позволит осуществлять телефонную связь посредством воздушных линий связи или кабелей, сколь угодно длинных, путем уменьшения необходимого рабочего тока до бесконечно малой величины. Это изобретение освободит от необходимости прибегать к дорогостоящим сооружениям, срок службы которых, к тому же, ограничен. Кроме того, оно чрезвычайно расширит сферу применения беспроводной передачи информации во всех областях знаний.

    Еще одно новшество, которому предстоит войти в практику, представляет собой передачу изображения обычным телеграфным способом и с имеющейся аппаратурой. Идея передачи изображения по телеграфу или телефону не нова, но трудности, связанные с ее практическим воплощением, препятствуют коммерческому использованию метода. Теперь, когда внесен ряд многообещающих усовершенствований, есть все основания надеяться на быстрый успех.

    Следующим полезным изобретением будет электрическая пишущая машинка, управляемая человеческим голосом. Это достижение удовлетворит давно назревшую потребность, так как оно приведет к упразднению должности оператора и сэкономит много труда и рабочего времени.

    Готовится к выходу на потребительский рынок чрезвычайно простой тахометр нового типа; думается, он окажется полезным на энергоустановках и центральных электростанциях, на судах, локомотивах и в автомобилях.

    Идет подготовка к внедрению многих усовершенствований в муниципальной сфере, в основе которых лежит использование электричества. В скором времени у нас обязательно будут повсюду установлены дымоуловители, поглотители пыли, озонаторы, стерилизаторы воды, воздуха, пищевых продуктов и одежды, средства предотвращения аварий на дорогах, эстакадах и в метро. Станет почти невозможным заразиться болезнетворными микробами или получить травму в городе, а сельские жители будут приезжать в город отдохнуть и укрепить здоровье.

    Применение новых электрических устройств на войне

    Текущие международные конфликты активнейшим образом стимулируют изобретение механизмов и орудий ведения войны. Вскоре появится электрическое огнестрельное оружие. Удивительно, что оно не было создано намного раньше. Дирижабли и аэропланы будут оснащены небольшими электрическими генераторами высокого напряжения, от которых по проводам будут передаваться на землю смертоносные токи. Линкоры и субмарины будут оснащены электрическими и магнитными элементами, обладающими такой высокой чувствительностью, что можно будет обнаружить приближение любого объекта под водой или в ночное время. Почти готовы к применению торпеды и плавучие мины, которые будут автоматически нацеливаться и без промаха входить в контакт с объектом, подлежащим уничтожению. Метод телемеханики, или беспроводного дистанционного управления автоматическими устройствами, будет играть весьма значительную роль в будущих войнах и, вероятно, на последующих этапах нынешней войны. Устройства, которые действуют таким образом, словно они наделены интеллектом, будут применяться чрезвычайно широко при нападении, а также в обороне. Они могут быть в виде аэропланов, аэростатов, автомобилей, надводных или подводных судов или принять любую другую форму соответственно требованиям в каждом особом случае; они будут обладать бoльшим радиусом действия и бoльшей разрушительной силой, чем средства, применяемые сейчас. Я считаю, что воздушная торпеда с дистанционным управлением сделает осадное орудие, к которому в настоящее время питают такое большое доверие, малоупотребительным.

    Целый том можно заполнить такими предложениями, не исчерпав до конца всех возможностей. Даже при существующих условиях продвижение вперед идет достаточно быстрыми темпами, но когда беспроводная передача энергии для массового потребления станет реальным фактом, прогресс человеческого общества будет нарастать с ураганной скоростью. Значение этого замечательного метода для жизни и благоденствия рода человеческого настолько превосходит всё достигнутое, что каждый просвещенный человек должен иметь четкое представление об основных движущих силах, имеющих отношение к совершенствованию человеческого общества.

    Энергия будущего

    Мы имеем в своем распоряжении три основных источника энергии для поддержания жизни: топливо, гидроэнергию и теплоту солнечных лучей. Инженеры часто говорят об использовании приливов, но обескураживающая истина состоит в том, что на один акр земли приливная вода выработает в среднем лишь одну лошадиную силу. Тысячи механиков и изобретателей растрачивают свои лучшие силы в попытках усовершенствовать волновые генераторы, не понимая, что полученная таким способом энергия никогда не смогла бы конкурировать с той, которая получена от других источников. Энергия ветра предлагает гораздо лучшие возможности и является чрезвычайно полезной в определенных случаях, но далеко неадекватной. Более того, приливы, волны и ветры являются периодическими и зачастую неустойчивыми источниками энергии и неизбежно влекут за собой применение больших и дорогостоящих аккумулирующих станций. Конечно, есть и другие возможности, но они труднодоступны, и нам приходится жить за счет первого из трех источников. Если мы используем топливо для получения необходимой нам энергии, то мы проживаем свой основной капитал и быстро его истощаем. Этот способ бесчеловечен и бессмысленно расточителен, и такое варварство должно быть остановлено в интересах грядущих поколений. Теплота солнечных лучей несет в себе огромное количество энергии, несопоставимо превышающее гидроэнергию. Земля получает энергетический эквивалент в 83 футо-фунта в секунду на каждый квадратный фут, на который лучи падают перпендикулярно. Из элементарных геометрических законов, приложимых к сферическому телу, следует, что средняя норма на квадратный фут земной поверхности составит четверть того количества, или 20? футо-фунта, то есть более одного миллиона лошадиных сил на квадратную милю, что в 250 раз превышает количество гидроэнергии на ту же площадь. Но это верно только в теории, практика заставляет взглянуть на это с другой стороны. Возьмем, к примеру, Соединённые Штаты, где для средних широт с учетом дневного колебания, суточных, сезонных отклонений и казуальных изменений эта энергия солнечных лучей уменьшится до, примерно, одной десятой, или до 100 000 лошадиных сил на квадратную милю, из которых мы, возможно, сумеем использовать в высокоскоростных турбинах низкого давления 10 000 лошадиных сил. Чтобы добиться этого, пришлось бы устанавливать машины и аккумулирующие станции такие огромные и дорогостоящие, что проект подобного рода перешел бы все границы реальности. Неизбежный вывод состоит в том, что гидроэнергия в значительной степени является нашим самым ценным источником. Именно на нее человечество будет возлагать свои надежды в будущем. При условии ее полного освоения и располагая идеальной системой беспроводной передачи энергии на какое угодно расстояние, человек сможет решить все проблемы физического существования. Расстояние, являющееся основным препятствием на пути общественного прогресса, будет полностью упразднено мыслью, словом и действием. Человечество объединится, войны станут невозможными, будет безраздельно властвовать мир.

    «Manufacturer's Record», 9 сентября 1915 г.

    49

    Грядущая исполинская битва под водой

    Когда сторонник беспощадного применения силы фон Тирпиц сделал грозное предупреждение Великобритании, что ее острова будут блокированы минами, а ее торговый флот потоплен субмаринами, немногие увидели в его словах нечто большее, чем опрометчивое обещание вероятного события, очень отдаленного по времени. По всей видимости, и сам непоколебимый адмирал-тевтонец не ожидал всерьез, что такая достойная сожаления возможность когда-либо представится. Но государства во многом уподобляются людям, которые находятся в мрачном расположении духа и ищут повод к вражде.

    Война, как она в большинстве случаев ведется, довольно скверная вещь, но когда ее целью становится бессмысленное уничтожение хрупкого механизма мира, она приобретает наиболее жестокий и презренный характер. Вероятно, есть какие-то глубоко лежащие причины, которые сделали этот ужасный международный конфликт неизбежным, но, несомненно, нет никакого объяснения, почему два таких просвещенных государства, как Германия и Англия, втянуты в безжалостное массовое уничтожение достояния, предназначавшегося для всеобщего блага.

    Нынешний конфликт возник, когда Германия декретом военного времени ввела жесткий контроль за всеми пищевыми продуктами. Это была исключительно экономическая мера, на которую кайзеровское правительство вынужденно пошло перед лицом предстоящих затрат. Но Англия заподозрила, что провиант из нейтральных государств, предназначенный для гражданского населения, может таким образом быть направлен для пропитания военнослужащих в действующей армии, и немедленно арестовала печально известную Вильгельмину. В Берлине это было истолковано как умышленная операция, которая, будь она доведена до логического конца, привела бы к голоду гражданского населения Германии, и сразу же акваторию вокруг Британских островов объявили репрессивной военной зоной. Вслед за этим шагом лев рыкнул в ответ, что Германия будет блокирована, и до сих пор все попытки наладить взаимопонимание терпят неудачу. В соответствии с германским видением вещей действия должны начаться ровно в 12 часов пополудни 17-го числа этого месяца, когда истекает срок берлинского ультиматума.

    Многих обозревателей удивит дерзость немцев, бросающих вызов врагу в его собственной стихии, намного превосходящему их в ресурсах и занимающему чрезвычайно выгодное стратегическое положение. Но разве немцы не доказали, что они способны более чем противостоять в сражении с тремя крупнейшими державами Европы? После семи месяцев такой войны, которую ни одно государство не могло бы вести в одиночку, они всё еще контролируют пятую часть территории Франции, почти всю Бельгию и изрядную часть Польши, и у них вряд ли можно заметить какие-либо признаки ослабления. На море они также не пассивны, напротив, беспристрастное рассмотрение всех обстоятельств говорит о весьма значительных успехах их военно-морского флота. Тем не менее это очень напоминает битву Давида с Голиафом. Не повторится ли история? Каким хитроумным устройством, придающим ему такую абсолютную уверенность, обладает этот современный Давид?

    Стремясь проявить вышеупомянутую боеспособность — живая сила против живой силы, техника против техники, Германия вряд ли будет иметь большие шансы на успех в столкновении такого рода с Англией. Ее специалисты военно-морского дела должны в полной мере понимать значение этого обстоятельства. Тогда что же наполняет их уверенностью в способности компенсировать британское превосходство в численности, в средствах ведения войны и в местоположении? Они, несомненно, должны иметь какие-то сюрпризы, которые при срабатывании появятся из-под воды, и недавние события, в сущности, подтверждают это предположение. Германия очень тщательно оберегает свои военные секреты. Это проявляется вновь и вновь. Ее сорокадвухсантиметровые пушки-гаубицы и другие боевые средства явились полным и ошеломляющим откровением для Тройственного союза, и всё же эти достижения не сегодняшнего дня. Мы только сейчас узнали, что она производит огромную пушку, способную послать снаряд весом в тонну через пролив Ла-Манш на расстояние тридцать миль, а ведь производство такого грозного орудия, безусловно, предполагает решение очень многих проблем в металлургии, химии, механике и технологии и не может осуществиться менее чем за десять лет.

    Так есть ли что-то иное, что Германия, питающая столь долгую и ожесточенную ненависть к Англии, могла бы считать более необходимым для своей безопасности и независимости, чем субмарины? И возможно ли, что, видя неизбежность конфликта, она откажется от разработок этого эффективного средства нападения и защиты? Если это произойдет, то это будет странным исключением в ее вошедшей в поговорку постоянной готовности. Но если она, действительно, преуспела в этой области, по крайней мере в такой же степени, как и в других, то возникает вопрос: что же она на самом деле создала? Современное изобретение — это высокотехничный продукт. Свежие мысли и представления появляются редко, процесс чаще всего выливается в поиск пригодной конструкции и искусного изготовления. Как только возникает необходимость, способы ее удовлетворения продумываются и просчитываются настолько целенаправленно, что множество независимых изобретателей приходят зачастую к одним и тем же выводам и результатам. Исключая открытие какого-либо неизвестного ранее принципа, строить догадки о котором не имеет смысла, мы можем сделать заслуживающее доверия предположение по поводу того, что именно Германия может держать про запас. Давайте рассмотрим вероятные возможности.

    Судя по имеющимся фактам, подводная война между двумя странами будет иметь характер обоюдной блокады. Одного взгляда на карту достаточно, чтобы увидеть, насколько безнадежна, судя по внешним признакам, перспектива успеха для Германии. Кратчайший кордон вокруг Британских островов, как видно, составит около 1 600 миль, в то время как заграждение с целью изоляции Германии не превысит 400 миль. Из отчетов военно-морских ведомств явствует, что на каждые три субмарины, которыми располагает Англия, приходится одна германская. Британцы имеют свои базы рядом с Германией, немцы же должны действовать на большом расстоянии, что, естественно, создаст серьезные проблемы. У англичан есть огромное дополнительное преимущество в том, что они могут применять для минирования обычные надводные суда, в то время как германская операция такого рода должна, в силу необходимости, проводиться исключительно с помощью субмарин. Даже если не принимать всё это во внимание, одно лишь изготовление и размещение такого огромного количества мин является колоссальной задачей для немцев. Для эффективной блокады им придется применить не менее двухсот тысяч мин, а это означало бы по крайней мере двадцать тысяч тонн сильного взрывчатого вещества, которым они вряд ли смогут запастись или даже произвести в нынешних тяжелейших условиях.

    Не следует также забывать что Германия практически не сможет изолировать Великобританию от Франции, и пока существует эта связь, никакая серьезная опасность в отношении поставок продовольствия островам не угрожает. Блокада Германии имеет свою забавную сторону, так как недавно британцы, помнится, намеревались откапывать врагов, как крыс, из их нор.

    Итак, может ли всё это быть в согласии с заявлением адмирала фон Тирпица о том, что изоляция Англии с помощью мин реальна? Конечно, для такого утверждения должно быть какое-либо серьезное основание. Дипломаты могут позволить себе вводящее в заблуждение высказывание, но отнюдь не военоначальники. Внимательный читатель не может не заметить, что за всё время этой войны информация, исходившая от последних, была неизменно правдивой и точной. Таким образом, мы знаем, что грузовместимость субмарин обычного тоннажа, предназначенных для установки минных заграждений, совершенно недостаточна и что для осуществления такой операции со всей точностью и без проволочек, если она вообще возможна, потребуется очень большое количество подводных лодок. Конечно, не может быть ни малейшего сомнения, что Германия строит подводные лодки втайне от всех и делает это со всей возможной поспешностью, и что их фактическое количество намного превышает сообщаемое в официальных сводках. Цена одного современного дредноута равна стоимости сорока лодок такого типа, а экономия является мощным стимулом для немцев. То, чего они достигли в производстве больших военных судов, является точным мерилом их тайных действий. Франция проливает свет на сложившуюся ситуацию. Эта страна, испытывая такую же потребность, обеспечила себя еще большим, чем Англия, количеством субмарин, к тому же лучшего типа. Что касается последнего утверждения, оно основано, главным образом, на открытии, сделанном, как считают, великим химиком Бартелотом, которое обеспечивает непрерывную подачу чистого воздуха для дыхания. Это очень важно во многих отношениях, например, для обеспечения большей безопасности команды и надежности работы, для продления срока погружения и сбережения энергии, как людской, так и механической. В среднем человек делает от шестнадцати до двадцати четырех вдохов и выдохов в минуту, забирая с каждым вдохом около двадцати кубических дюймов воздуха. С расчетом на допустимую норму потребления потребуется приблизительно пятьсот кубических футов свежего воздуха в сутки на каждого члена экипажа. Иметь на борту резервуары со сжатым кислородом небезопасно и в других отношениях нежелательно, производить его на самой подводной лодке затруднительно и дорого. Для обычных субмарин правилами предусмотрено пребывание под водой в течение двадцати четырех часов. Очевидно, что для успешного проведения операций в отдаленных регионах, контролируемых противником, немцам потребуется более длительное пребывание под водой. Если они преодолели эту трудность, что в данном случае вполне возможно, и если они в настоящее время располагают большим количеством субмарин, им всё-таки придется предусмотреть создание баз в английских водах для успешного проведения операций. Но базы не могут находиться на поверхности.

    При нынешнем уровне развития науки и техники подводные базы отнюдь не являются мечтой. Это вполне осуществимо. Если немцы освоили навигацию до такой степени, что все военные операции могут совершаться под водой, то в этом случае очевидная уверенность фон Тирпица объяснима. Обладание таким грозным средством могло бы дать Германии огромное преимущество в нынешнем конфликте — достаточное, чтобы компенсировать всё, в чем она проигрывает.

    Но даже если это имеет место, применяемый сейчас тип субмарин водоизмещением в среднем одна тонна не позволит проводить операции с требуемой интенсивностью и быстротой исполнения, так как и наступательные возможности, и скорость таких судов ограничены. Если это ясно стороннему специалисту, насколько более очевидным это должно быть профессионалам, которые годами набираются опыта для устранения именно такого рода чрезвычайных обстоятельств. Германские конструкторы военно-морских судов должно быть уже давно поняли, что для окончательного решения стоящих перед ними задач им придется строить субмарины гигантских размеров. В них они смогут воплотить всё необходимое для ведения наступательных операций: высокую скорость, большой радиус действия и способность погружаться на продолжительное время.

    Нет никаких достоверных свидетельств о том, что реально строятся субмарины, являющиеся настоящими подводными боевыми кораблями. За исключением одной, той, что построена для России. Эта громадная подводная лодка, как о ней пишут, имеет водоизмещение 5 400 тонн и оснащена двигателями мощностью в 18 000 лошадиных сил. Надводная скорость достигает двадцати шести узлов, а под водой — четырнадцати. Радиус действия составляет 18 500 миль, и она способна пройти в подводном режиме 275 миль. На ее борту находится большой экипаж, 120 мин и 60 торпед, и она может оставаться под водой в течение долгого времени. Это новость не вчерашнего дня, а немцы не медлят в подхватывании любой новой идеи, имеющей отношение к способам ведения войны. Напротив, факты свидетельствуют о том, что они, как правило, далеко опережают другие страны в технических достижениях такого рода. Вполне логично предположить, что они намного продвинулись вперед и, как всегда, втайне от всех. И если они построили много субмарин такого уровня, они не только способны осуществить эффективную блокаду, но могут даже добиться успеха в попытке вторжения. Возможно, это и есть то, что придает им поразительную уверенность в этой битве против значительно превосходящих сил, возможно, это и есть праща Давида.

    Недавние высказывания по поводу цеппелинов производят такое странное впечатление своей слабостью и настолько контрастируют с прежними решительными заявлениями, что уверенность в разрушительной силе этого вида летательных аппаратов сильно поколеблена, причем больше из-за этих высказываний, чем из-за недостаточных тактико-технических данных. Тем не менее цеппелины, несомненно, сыграют очень важную роль в этой небывалой доселе войне. Нет сомнений, что они могут с успехом применяться для транспортировки специально приспособленных для этого субмарин небольшого размера водоизмещением несколько тонн и для их размещения в соответствующих местах в ночное время. Производство таких небольших лодок могло бы обойтись в несколько тысяч долларов каждая; их не нужно оснащать сложной аппаратурой, как это делается на обычных субмаринах, а поместить в нее только одну торпеду с пусковым устройством. Понадобился бы только один оператор-доброволец для управления; и если бы оказалось, что таких субмарин произведено значительное количество, они могли бы стать тем фактором, с которым придется считаться.

    Что касается истребления торговых судов, Германия имеет сомнительное превосходство, состоящее в том, что ей нечего терять. Более того, следует указать, что в этом отношении британское превосходство в численности не имеет никакого значения. Англия может иметь сто судов на каждое немецкое судно, результат будет тот же. Субмарина, которая выходит на задание с целью уничтожения объекта, вооружена зрением, а суда, предназначенные для прикрытия, слепы. В скором времени появятся эффективные приборы для борьбы с этой угрозой, но в данное время вопросы исключительной важности зависят от обстоятельств таинственных и неизвестных. Атмосфера насыщена ожиданием надвигающейся катастрофы, и перед взором человечества разворачивается невиданное доселе ужасающее зрелище.

    Машинописный текст статьи без библиографических данных (январь — февраль 1915 г.), найденный в архиве Музея Николы Теслы.

    50

    Чудеса будущего

    Никола Тесла ~ изобретатель, маг электричества и провидец. Ему принадлежит открытие передачи переменного тока, система преобразования и распределения тока при помощи колебательных электрических разрядов, передача энергии по одиночному проводу, система беспроводной передачи данных, трансформатор и т. д.

    Многие потенциальные исследователи, потерпев неудачу в своих попытках, начинают сожалеть по поводу того, что родились в эпоху, когда всё уже якобы сделано. Весьма распространено ошибочное представление, будто возможности открытий уже исчерпаны. В действительности же дело обстоит как раз наоборот. То, что до сих пор достигнуто в области электричества, ничто по сравнению с тем, чего еще предстоит достичь. Кроме того, многие технические решения имеют старомодный характер и по сравнению с новым методом — использованием электричества — невыгодны с точки зрения экономичности, удобства и пр. Преимущества последнего настолько очевидны, что инженеры при любом удобном случае предлагают решения с помощью электричества.

    Энергия воды открывает широкие возможности использования электричества, в особенности в области электрохимии. Использование энергии водопадов — наиболее известный и экономичный метод получения солнечной энергии. Основой его служит то, что ни вода, ни электричество несжимаемы. КПД ГЭС может достигать 85 процентов. ГЭС требует значительных вложений вначале, но зато стоимость ее обслуживания невелика, а эффективность необычайно высока. Моя система, основанная на переменном токе, используется бесперебойно, и к настоящему времени удалось получить около 7 000 000 лошадиных сил. Как известно, за год тонна угля дает не более шести процентов лошадиных сил. Поэтому энергия, получаемая таким способом от воды, эквивалентна энергии, полученной от 120 000 000 тонн угля, что составляет от 25 до 50 процентов его промышленного использования в США.

    Значительные перспективы дает использование угля. Преимущественно из этого ценного минерала мы извлекаем солнечную энергию, которая необходима для удовлетворения промышленных и коммерческих потребностей. Согласно статистике, для среднегодового производства энергии в США используется 480 000 000 тонн угля. В идеальных двигателях этого топлива было бы достаточно, чтобы производить верных 500 000 000 лошадиных сил в год, однако КПД настолько низок, что извлечь больше 5 процентов тепла не получится. Комплексный план использования электричества при добыче, транспортировке и сжигании угля способен значительно уменьшить эти огромные издержки. Более того, породы с низким содержанием угля, миллионы тонн которого выбрасываются, могут найти рациональное применение.

    Подобные же соображения касаются природного газа и нефти. Ежегодные убытки от их неправильной переработки достигают сотен миллионов долларов. В самом ближайшем будущем такая расточительность будет считаться преступлением, а хозяева разработок будут караться по всей строгости закона. Эта сфера — поистине необъятное поле для многообразного использования электричества. Еще одна возможная область приложения электричества — производство железа и выплавка стали.

    Для производства тонны чугуна требуется около тонны кокса. Т. е. ежегодно используется около 31 000 000 тонн угля. Воздуходувные печи дают 4 000 000 кубических футов газов, которые могут использоваться для выработки энергии. Таким способом возможно получить электроэнергии до 2 500 000 лошадиных сил.

    Для производства кокса у нас используется примерно 41 000 000 тонн угля. Газы, являющиеся продуктом отработки, позволят произвести электроэнергии примерно до 1 500 000 лошадиных сил.

    Я много размышлял о возможности применения этого метода в промышленности и решил, что с помощью новых, эффективных, чрезвычайно дешевых и простых термодинамических трансформаторов электрогенераторы могут дать энергии до 4 000 000 лошадиных сил путем утилизации тепла этих газов, которой мы сейчас не наблюдаем вообще, либо видим в очень малой степени.

    При помощи систематических улучшений и усовершенствований можно достичь гораздо лучших результатов, что позволит получить в год не менее $50 000 000 прибыли. Электроэнергию можно рационально применять для связывания азота в атмосфере и производства удобрений, спрос на которые неограничен, тогда как объем производства незначителен за счет высокой стоимости энергии. Я верю в практическую реализацию этого проекта в ближайшем будущем и рассчитываю на стремительное расширение применения электричества в этой сфере.

    Близится время, когда атмосферные осадки окажутся под нашим полным контролем, и тогда станет возможно извлекать практически безграничное количество воды из океанов, получать любое количество энергии и полностью изменить лик Земли орошением и культивацией почвы. Едва ли возможно представить себе все перспективы, которые открывает перед человечеством развитие электричества.

    Существующие ныне ограничения на передачу энергии будут устранены двумя путями: использованием изолированных подземных проводов и введением системы беспроводной передачи.

    Когда эти передовые идеи найдут практическое воплощение, мы сумеем полностью использовать потенциал энергии воды — именно она будет снабжать нас основным количеством энергии для бытовых, общественных и иных нужд, как в мирное, так и в военное время.

    Широчайшее и девственное поле применения электричества — судовые двигатели. Одна из наших ведущих электротехнических компаний оснастила большой корабль высокоскоростными турбинами и электродвигателями. Это было сделано впервые. Подобное использование вскоре найдет широкое применение, ибо преимущества электродвигателей ныне очевидны для любого. Весьма вероятно, что большую роль будут играть гироскопические аппараты, поскольку их широкое применение на судах — неизбежность. До сих пор очень мало сделано для применения электродвигателей в различных отраслях индустрии, хотя возможности здесь безграничны.

    Уже написаны целые тома об использовании электричества в сельском хозяйстве, но факт заключается в том, что практически здесь ничего не сделано. Возможности электрического тока высокого напряжения признаны повсеместно, так что можно быть уверенным, что распространение электродвигателей в сельском хозяйстве вызовет настоящую революцию. Предотвращение лесных пожаров, уничтожение микробов, насекомых и грызунов — везде может найти применение электричество.

    В не столь отдаленном будущем будет открыто множество новых способов применения электричества в целях повышения безопасности. Особенно это относится к безопасности кораблей в плавании. Люди будут располагать электроприборами, предотвращающими столкновения, и мы даже будем в состоянии рассеивать туман при помощи электричества и проникающих лучей. Я верю, что в течение ближайших лет будут построены беспроводные электростанции для освещения океана. Этот проект абсолютно реален; при условии его воплощения в жизнь он более любого иного проекта обеспечит безопасность в море людских жизней и сохранность имущества. Таким образом, одна и та же электростанция испускает постоянные электромагнитные волны и даст возможность кораблям в любое время принимать точные радиопеленги и иные необходимые сведения, тем самым упраздняя ныне существующие средства. Электрические эффекты можно использовать для передачи точного времени и подобных целей.

    Там, где используются большие объемы электрического света и энергии, открываются огромные перспективы ввиду применения многочисленных усовершенствований, которые могут быть включены в цепь для стабилизации нагрузки и увеличения производительности электростанций в любое удобное время. Мне самому известно несколько новых разработок такого рода. Наиболее важная из них — это, вероятно, электрический холодильник, который позволяет избежать использования опасных и нежелательных химикалий. Это устройство не нуждается в постоянном присмотре и очень экономично. Оно позволит значительно снизить стоимость заморозки, и тогда холодильники войдут в каждый дом.

    Недавно был выпущен фонтан, приводимый в движение электричеством. Есть надежда, что вскоре он найдет повсеместное употребление и придаст дополнительную привлекательность садам, паркам и отелям.

    Уже сейчас производятся многоцелевые кухонные машины, и практические разработки и решения в этой сфере пользуются широким спросом. Многие электрические эффекты просто удивительны и достойны самой широкой популяризации. Без сомнения, здесь можно сделать еще немало. Театры, общественные заведения и обычные жилые дома настоятельно нуждаются в большом количестве технических улучшений, обеспечивающих комфортабельность; соответственно изобретатели имеют здесь широкое поле деятельности.

    Значительно улучшить можно также телеграф и телефон. Использование нового приемника, чувствительность которого может быть увеличена почти безгранично, позволяет наладить общение по телефону при помощи воздушных линий связи или кабеля любой длины при уменьшении силы тока до бесконечно малого значения. Такое изобретение во много раз увеличит объемы беспроводной передачи данных.

    Следующий шаг — это передача изображения при помощи телеграфа. Будут использоваться уже существующие аппараты. Идея передачи изображений посредством телефона или телеграфа разработана давно, но на пути ее коммерческой реализации стоят практические трудности. Недавно были проведены многообещающие эксперименты, и есть все основания полагать, что успех близок. Еще одним ценным изобретением станет электронная печатная машинка, управляемая человеческим голосом. Такое изобретение окажется необычайно полезным, поскольку оно упразднит должность наборщика и сбережет массу труда и времени.

    В ближайшем будущем предстоит ввести многие бытовые усовершенствования, основанные на электрических эффектах. Речь идет о рассеивателях дыма, пылеуловителях, озонаторах, стерилизаторах воды, воздуха, пищи и одежды, а также устройствах, обеспечивающих предотвращение несчастных случаев на улицах, эстакадах и в метро. В городе практически нереально станет пораниться или подхватить заразу. Особенно выиграют от этого сельские жители, которые будут ездить в город на отдых!

    Еще одной областью, открывающей огромные возможности для применения электричества, является электротерапия. Особенно многообещающими выглядят токи высоких частот. Придет время, когда соответствующие устройства станут обычными в любом доме. Возможно, с традиционной ванной будет покончено. Очистка тела будет производиться мгновенно простым подсоединением его к электроисточнику очень высокого потенциала, что приведет к избавлению от грязи и любых мелких частиц, прилипших к коже. Такая ванна, будучи сухой и — с точки зрения времени — экономичной, вместе с тем окажет положительное терапевтическое воздействие. Ко всему прочему, в настоящее время разрабатываются электроприборы, которые сделают счастливыми глухих и слепых.

    Электронные устройства вскоре станут важным фактором предотвращения преступлений. В суде свидетельство на электронном носителе будет иметь доказательную силу. Мне думается, что в не столь отдаленном будущем при помощи электричества можно будет визуализировать на экране любой появившийся в голове образ, и сделать его видимым для любого человека в любом месте. Усовершенствование такого типа чтения мыслей революционно изменит к лучшему наши общественные отношения. Правда, верно и то, что изворотливые мошенники постараются использовать это средство, чтобы проворачивать свои темные делишки.

    Нынешний военный конфликт — мощный стимул для изобретения разрушительных машин и орудий. Вскоре будет выпущено электрическое ружье. Удивительно то, что изобретено оно было совсем недавно. Дирижабли и аэропланы будут оснащены компактными генераторами высокого напряжения, бьющими по земле током высокого напряжения. Боевые корабли и субмарины предстоит оснастить высокочувствительными электрическими и магнитными щупами, позволяющими обнаружить приближение любого объекта под водой или в темноте. Торпеды и плавающие мины будут наводиться автоматически и без промаха поражать подлежащий уничтожению объект; собственно, ждать этого уже совсем недолго. Искусству дистанционной автоматики, т. е. беспроводному управлению автоматическими приборами на расстоянии, принадлежит важнейшая роль в будущих войнах и, возможно, на заключительном этапе нынешней. Подобные изобретения, которые, кажется, обладают собственным интеллектом, могут применяться в аэропланах, автомобилях, воздушных шарах и т. п., в соответствии с конкретными требованиями момента. Они будут обладать гораздо большей зоной поражения и большей разрушительной силой, нежели применяемые ныне машины. Я уверен, что воздушная торпеда с дистанционным управлением полностью вытеснит огромные осадные орудия, пользующиеся ныне столь высоким доверием.

    «Collier's Weekly», 2 декабря 1916 г.

    51

    Электрический привод для боевых судов

    Совершенная простота индукционного двигателя, его безупречная реверсивность и другие уникальные свойства делают его в высшей степени подходящим для силовых установок на судах, и с тех пор, представив свой метод передачи энергии вниманию специалистов, выступая в Американском обществе электротехников, я решительно настаивал на его использовании для этой цели. В течение многих лет этот проект признавали нереальным, а я подвергался критике, в некотором смысле столь же злой, сколь некомпетентной. В 1900 году, когда в «Century Magazine» появилась моя статья, где пропагандировалось применение электрического привода, «Marine Engineering» объявил этот проект «верхом глупости», и такая буря поднялась вокруг моих предложений, что редактор еще одного технического периодического издания подал в отставку и порвал всякие отношения, лишь бы не допустить публикацию каких-либо нападок.

    Прием подобного характера был оказан моему управляемому по радио судну, многократно описанному в «Herald» за 1898 год. С тех пор сроки патентов на эти изобретения истекли, и теперь они являются всеобщим достоянием. Между тем необдуманное неприятие и невежество сменились услужливым интересом и признанием их ценности. Недавно министерство военно-морского флота заключило контракты общей стоимостью 100 000 000 долларов на строительство семи боевых кораблей с приводом от асинхронного электродвигателя, и такая же сумма ассигнована для покрытия расходов на постройку четырех огромных линкоров, которые должны быть оснащены таким же образом. Этот последний проект встречает сопротивление некоторых судостроителей, производителей турбин, поставщиков электрооборудования и некоторых инженеров, которые из опасения, что правительство допустило фатальную ошибку, убеждали власти в необходимости применения турбины с механическим приводом.

    Спорная аналогия

    Написаны многочисленные письма протеста на имя К.-А. Свенсона, члена сенатского комитета по военно-морским вопросам, но результат всей этой переписки носит спорный характер и совершенно бесполезен для тех, кто хотел получить информацию. Заслуживает сожаления, что этот вопрос должен быть поставлен в тот критический момент, когда незамедлительные приготовления к отражению надвигающейся угрозы национальной безопасности официально признаны обязательными к исполнению, и ввиду этого в общественном сознании не должно возникать никаких сомнений относительно превосходства боевых средств, рекомендованных военно-морскими экспертами. Ниже я попытаюсь разъяснить это широкому кругу читателей.

    Наиболее эффективным средством приведения судна в движение является струя воды, выбрасываемая от корпуса судна. Хотя теоретические законы, которым подчиняется действие струи, подробно описаны Ранкином пятьдесят лет тому назад, в среде инженеров и авторов книг по гидравлике всё еще существует странное и необъяснимое предубеждение против применения этого принципа. Но люди дальновидные являются убежденными сторонниками его перспективности. Несмотря на то что современные возможности в двигательных системах не позволяют применять реактивную струю, обладающую большими преимуществами, можно с уверенностью прогнозировать, что в скором времени более полное освоение океанских глубин будет осуществляться с помощью этого принципа. Я глубоко убежден, что в то время, когда пишутся эти строки, он уже применяется в субмаринах, совершающих хищнические нападения в океанах, так как исключительно их бесшумной работой можно объяснить, почему они с такой легкостью избегают обнаружения с помощью приборов прослушивания. Издаваемый звук является ахиллесовой пятой подводной лодки. Снижение уровня шума существенно увеличивает эффективность нового боевого средства.

    Спиралевидный гребной винт

    Однако при существующих условиях наилучшие результаты достигаются на всех типах надводных судов со спиралевидным винтом, который приводится в движение четырьмя различными способами. Во-первых, непосредственно от вала двигателя; во-вторых, посредством зубчатой передачи; в-третьих, через гидравлический преобразователь и, в-четвертых, с помощью электрического привода. В целях экономии энергии гребной винт должен вращаться со средней скоростью, первый из упомянутых способов, или «прямая передача», наилучшим образом подходит к поршневому или роторно-поршневому двигателю, из которых первый неудобен, а применение второго невозможно, в результате конкуренция привела к появлению спроса на турбину. Но поскольку для ее оптимальной работы необходима очень большая скорость, необходимо приспособление для винта. В какой-то мере это проявилось в «ступенизации», то есть в прохождении пара через ряд последовательно расположенных турбин, что повлечет к удорожанию и иного рода проблемам. Необходимость уменьшения размеров судна, стоимости машинного оборудования и обеспечения лучших эксплуатационных качеств привели к осуществлению второго шага — применению «редукторной передачи от турбины», в которой система зубчатых колес, впервые предложенная де Лавалем, передает движение на гребной винт. Вслед за этим попытки устранить некоторые ограничивающие факторы этой комбинации вылились в третий способ — «гидравлический привод», при котором турбина приводит в движение гребной винт посредством центробежного насоса и гидродвигателя. Наконец, в качестве дальнейшего шага к совершенствованию был выдвинут последний из перечисленных выше способов — «электрический привод». В этом случае турбина сообщает вращательное движение динамо-машине, которая, в свою очередь, запускает мотор, несущий на своем валу гребной винт.

    Преимущества приводов разного типа

    Каждый из названных способов имеет своих сторонников и последователей. В принципе, первому способу можно было бы отдать предпочтение, если бы не многочисленные препятствия, связанные с его применением. Второй тип привода дешев, но зубчатая передача вызывает серьезные возражения. Третий способ, хотя и менее экономичный, привлекает рядом целесообразных и полезных качеств. Что касается последнего способа, он не только очень эффективен, но дает результаты, которых невозможно достичь другими способами. Закон естественного отбора продолжает действовать, и теперь идет борьба за превосходство между турбинами с механическим и электрическим приводами.

    Путем постепенного усовершенствования режущих инструментов, научного расчета, благодаря достижениям в металлургии и улучшению смазочных материалов, так называемая шевронная зубчатая передача была доведена до высокой степени совершенства. Де Лаваль добился девяноста семи процентов КПД, а Макалпин, Мелвилл и Вестингауз девяноста восьми с половиной при осуществлении трансмиссии с ведущего вала на ведомый. С другой стороны, при использовании электрического привода можно максимально рассчитывать на девяносто три и три четверти процента. Это означает, что с зубчатой передачей та же самая турбина может передать на пять процентов больше мощности на гребной винт, что должно увеличить скорость крейсера с тридцати пяти до чуть более тридцати пяти с половиной узлов. Поскольку с первого взгляда становится очевидным, что электропривод требует дополнительной площади, имеет больший вес и дороже, то, вполне естественно, что те, кто не исследовал его полно и всесторонне, выносят решение в пользу зубчатой передачи.

    Некоторые фатальные ошибки

    Но тщательное исследование вопроса может побудить их изменить мнение на противоположное. Оценивая относительные достоинства этих в сущности различных движущих средств, они допускают две фатальные ошибки. Первая — в качестве критерия рассматривается энергия, передаваемая в критическом режиме, вторая — проводится параллель между существующими устройствами, совершенно различными, одно из них до модернизации, другое — усовершенствованное; первое при этом не способно выполнять существенные функции второго. Когда исходная информация неверна, то и выводы будут ошибочными. Следовательно, противники электрического привода сделали вывод, что он менее эффективен, чем зубчатая передача, имеет больший вес, дорогостоящ и вызывает сомнение в результате. Сколько истины в этих утверждениях, станет очевидным после всестороннего изучения установленных фактов.

    Результативность электрического привода в работе судна надо рассматривать в комплексе. Ради краткости рассмотрим его в следующих основных аспектах: 1) работа турбины; 2) энергия, передаваемая на гребной винт; 3) эффективность винта; 4) крейсирование в экономном режиме; 5) работа на большой мощности; 6) расход горючего (топлива) вспомогательным оборудованием и аппаратурой для эксплуатации судна; 7) общая экономия и 8) быстрота и точность управления всеми действиями — внутренними и внешними.

    Современные турбины совершенно не подходят для силовых установок на судах. Они являют собой поразительный пример устаревшего изобретения невысокой ценности, возведенного в положение исключительно рентабельной системы путем запутанных поисков и поразительного технического навыка. С сотнями тысяч легко ломающихся лопаток, с лопастями, которые из-за коррозии и эрозии вскоре становятся бесполезными, и небольшими зазорами между поверхностями, которые вращаются с огромными скоростями, турбины являются источником постоянной опасности и риска.

    Нереверсивные турбины

    Главный же их недостаток состоит в том, что они нереверсивные, это делает необходимым применение отдельных турбин для движения в обратную сторону. Использование их связано с большими расходами и значительными потерями на трение, что накладывает жесткие ограничения на температуру рабочего тела. Очень большой перегрев, столь желательный при термодинамическом преобразовании, в таких непрочных системах исключается, но температура нагрева от 200 до 300 градусов по Фаренгейту допустима.

    Следовательно, до этого предела турбина выгодна для работы динамо-машины. При температуре пара двести градусов она наверняка даст экономию около двадцати трех процентов пара и десяти процентов топлива. Это, однако, не единственная выгода. Турбина, освобожденная от всех недостатков зубчатой передачи, способна без риска работать на более высоких оборотах, что повысит производительность и выходную мощность. Таким образом, путем применения умеренного перегрева и других несложных допустимых приемов она обретает способность производить на двадцать пять процентов больше энергии при том же количестве топлива, и одно это, несомненно, могло позволить электроприводу опередить своих конкурентов.

    Передача механической энергии

    В отношении энергии, передаваемой от турбины на гребной винт, может показаться, в свете вышесказанного, что зубчатая передача эффективнее на пять процентов. Это может быть в исключительных случаях, но не в обычном рабочем режиме. Отсюда берет начало ошибка тех, кто принимает результаты, полученные при постоянной нагрузке, за критерий при сравнении. Усовершенствование современных скоростных зубчатых передач было проявлением настоящей инженерной изобретательности. Это замечательное устройство, но оно в то же время имеет свои слабые места и недостатки. Поскольку потери на трение в нем практически постоянны в течение продолжительного периода эксплуатации, относительно большое количество энергии поглощается при малой нагрузке. Более того, зубчатая передача очень чувствительна к ударам и вибрациям, которые разрушают поверхностную масляную пленку, столь необходимую для бесперебойной работы. Вследствие этого, когда сила сопротивления подвергается частым и внезапным отклонениям от заданного режима, происходит большая потеря энергии. Замеры, которые я произвел на турбинах с зубчатыми передачами, показали, что если при стабильном расчетном режиме коэффициент полезного действия составлял девяносто шесть процентов, то при скачущей нагрузке достигалось не более девяноста процентов. Именно этого и можно ожидать на практике. Любой, кто слышал надсадно ревущий двигатель парохода в бурном море, не мог не заметить, как меняется поворотное усилие, когда судно испытывает бортовую и килевую качку и с трудом рассекает большие волны и преодолевает глубоководные течения. В ходе боевых действий корабль может попасть в подобные условия, о чем свидетельствуют недавние морские сражения, когда взрывающиеся снаряды вздымали огромные, как горы, массы воды. При таких обстоятельствах зубчатая передача очень не выгодна, в то время как электропривод в значительно меньшей степени реагирует на такие помехи. Таким образом, представление о том, что зубчатая передача передает больше первичной энергии на гребной винт, чем комбинация динамо-машины и мотора, в значительной степени иллюзорно. Существует достаточно доказательств, полученных и экспериментально, и путем логических умозаключений, что истина, разумеется, в обратном.

    Преимущество электрического привода

    Сопоставление эффективности работы гребного винта в передаче энергии вращения приводит к выводу, что она выше при использовании электрического привода, это всецело основано на лучшей приспособляемости и гибкости комплекса. Но есть более серьезные факторы, которые следует принять во внимание. Наличие электромагнитного поля между турбиной и винтом существенно снижает потери от ударов, вибрации, разгона двигателя и других помех, благодаря его упругой ударной вязкости и возможности стабилизации. Достигаемая таким способом экономия энергии при высокой скорости и в условиях бурного моря довольно значительна.

    Экономичность при движении на крейсерской скорости является одним из наиболее желательных качеств боевого судна. Она проявляется при эксплуатации в обычном режиме, поскольку участие в сражениях редко и незначительно по времени. Злейшие противники электрического привода не отрицают, что его отличает именно это качество, на которое, главным образом, рассчитывает производитель, гарантируя снижение расхода горючего на 10–12 процентов по сравнению с механическим приводом. Последний признан безнадежно непригодным из-за неспособности подстраиваться к меняющейся скорости и неэкономичным в работе крейсерской скорости, в то же время первый легко поддается адаптации и экономичен в любых условиях.

    Электрический привод обладает еще одним качеством, которое, возможно, окажется особенно полезным в бою, — это его способность выдерживать огромные перегрузки, не создавая рискованных ситуаций благодаря основному свойству соединения между турбиной и гребным винтом, о чем говорилось выше. Механический привод отличается жесткостью и неподатливостью, и любое возрастание напряжения, особенно внезапное, может вызвать аварию.

    Экономия энергии

    Что касается соответствующего вспомогательного оборудования и других механизмов, обслуживающих судно, на которые уходит приблизительно 20 процентов расходуемого горючего, весьма существенная экономия энергии будет получена в результате внедрения электрического способа. Кроме того, центральный блок питания поможет снизить другие потери — можно будет избавиться от многих вспомогательных приборов, и суммарная экономия существенно возрастет.

    Но с военной точки зрения быстрота, удобство и точность работы в заданном режиме будут, вероятно, наиболее существенными из приобретаемых преимуществ. Путем нажатия кнопки можно немедленно выполнить любую операцию. В результате реверсирования двигателей судно, идя полным ходом, может остановиться, не затрачивая на маневр расстояние, превышающее длину судна. Появится возможность заставить судно выполнять все перестроения с необычайной скоростью, и будут выполняться маневры, о которых раньше никто не мог и подумать.

    Защитники механического привода допускают курьезную ошибку в отношении веса. Вряд ли нужно утверждать, что сравнивать устройства очень разного характера и возможностей неразумно, если не абсурдно. Следует сопоставлять лишь такие, которые способны достигать идентичных результатов. Так вот, механический привод, соответствующий электрическому, должен состоять из четырех основных турбин с зубчатыми передачами, четырех реверсивных турбин той же мощности и восьми меньших приводных и реверсивных турбин для крейсерского хода. Это скопление сложных и не всегда достаточно надежных механизмов с их хитросплетением водных, воздушных и масляных труб, вентилей, насосов и приспособлений будет намного превышать по весу предлагаемый электрический привод и потребует также более тщательной структурной защиты, не говоря уже о других дефектах и недостатках.

    Проблема веса

    Следует, однако, заметить, что вес оборудования должен рассматриваться в его отношении к весу корабля. Один агрегат может быть тяжелее другого, но если он эффективно снижает вес топлива и другого груза, то из этих двух он фактически при всех условиях легче. Это в той же степени верно и в отношении стоимости. Сравнительные цифры ничего не значат. Проблема в том, оправдано ли вложение капитала в то, что предстоит осуществить. Уже достаточно сказано в доказательство того, что с учетом результатов, во всех отношениях равноценных, допуская, что они возможны, привод шестеренчатого типа, вопреки всем уверениям в обратном, будет более дорогостоящим.

    Утверждение, что электрический привод является экспериментальным образцом и ненадежен в эксплуатации, выглядит наименее логичным из недоброжелательных высказываний. Во-первых, он с успехом применяется на ряде судов, и еще больше их находится в процессе производства. Он также доказал свою способность на более высокий КПД, чем любой другой тип привода. Но это совершенно несущественно. Уверенность в том, что на современном этапе все ожидаемые результаты будут реализованы, основывается не на нескольких демонстрационных опытах, а на многолетней работе с силовыми установками — с тех самых пор, как мой комплекс был введен в действие и остается рентабельным. Асинхронные двигатели суммарной мощностью десятки миллионов лошадиных сил используются сейчас во всем мире и работают безотказно.

    Требования к крейсерам нового типа

    Каждому крейсеру нового типа потребуется энергия, эквивалентная 180 000 лошадиных сил, которая, в случае необходимости, может быть выработана четырьмя блоками по 45 000 лошадиных сил. Турбины такой мощности уже созданы и сейчас работают. Динамо-машины с соответствующей выходной мощностью установлены на нескольких объектах и снабжают светом и энергией большие города и округа. Асинхронные электродвигатели мощностью 15 000 лошадиных сил выпускаются промышленностью и могут иметь любые желаемые габариты, так как из всех типов моторов этот наиболее прост и надежен. Уже давно сделаны расчеты всей установки, и она доведена до полного совершенства в мельчайших деталях. Это очень большой проект, но любая из фирм, имеющих соответствующие возможности, может реализовать его в короткие сроки. Даже не придется создавать новое оборудование. В отношении электропривода не существует ничего непроверенного или рискованного.

    Большое значение придается сообщениям, подлинность которых еще следует установить, о том, что этот проект был отвергнут Англией и Германией. Но это не имеет значения. Его не раз отвергали и здесь. Кроме того, в Европе назревала война, и это было неблагоприятное время для радикальных инноваций.

    Несмотря на то что двигатель Дизеля открывает большие перспективы, а гидравлический привод д-ра Феттингера проходит пробные испытания, было бы, действительно, прискорбно, если бы Соединённые Штаты, где асинхронные двигатели нашли самое широкое применение в промышленности, оказались на последнем месте среди стран, признавших его внедрение на флоте. Такие ошибки происходят довольно часто. Военно-морские ведомства иных государств не имеют привычки давать информацию о своих действиях для опубликования в прессе и можно предугадать, не боясь ошибиться, что, если прогрессивные начинания в Штатах будут тормозиться, следует ожидать разочарований, уже наблюдавшихся ранее.

    Было бы излишне подробно останавливаться на других неодобрительных высказываниях, играющих второстепенную роль и не имеющих никакого принципиального значения. Не вдаваясь в утомительное обсуждение технических проблем, можно утверждать, что электрический привод, если он разумно спроектирован, сэкономит не менее двадцати пяти процентов топлива, а при надлежащем уходе, обладая определенными и неоценимыми преимуществами, будет легче, дешевле и во всех отношениях надежнее по сравнению с механическим приводом. Я считаю, что можно изобрести устройство, допускающее размещение всех существенных компонентов ниже ватерлинии. В этой связи остается надеяться, что министр военно-морского флота не будет обращать внимания на протесты противников [электропривода], какими бы они ни были «патриотическими», но будет способствовать, используя все имеющиеся у него полномочия, поэтапному завершению большой работы.

    Появление реверсивной турбины серьезно изменит ситуацию в пользу зубчатой передачи. Такая турбина построена и была описана в «Herald» от 15 октября 1911 года. Это наименьший по весу двигатель из всех когда-либо созданных, и он легко управляем при температуре красного каления, в связи с чем достигается весьма высокая экономия в процессе преобразования тепловой энергии. Я предвижу ее стремительное распространение и широкое использование в качестве силовых установок на кораблях. Однако, несмотря на то что в оснащении судов появится идеально простой и недорогой привод, по-прежнему будут находиться веские основания в пользу применения электрического привода на боевых судах. Чтобы рассеять все сомнения, возникающие в сознании людей под воздействием разнообразных мнений специалистов, я назову лишь одно из них, которое в сущности является в достаточной степени логичным и убедительным и позволяет обойтись без дополнительных доказательств.

    Разоружение неосуществимо

    Нет смысла помышлять о разоружении и всеобщем мире перед лицом внушающих ужас событий, разворачивающихся в настоящее время. Они убедительно доказывают, что ни одной стране не будет позволено управлять всеми остальными каким бы то ни было образом. Прежде чем все народы смогут почувствовать защищенность своего существования, и прежде чем утвердится мировая гармония, необходимо устранить определенные препятствия, основными из которых являются германский милитаризм, британское владычество на море, мятежная волна в многомиллионной России, угроза, исходящая от желтой расы, и власть денег в Америке. Устранение этих препятствий будет происходить медленно и тяжело в соответствии с земными законами. Земля не скоро еще избавится от международных трений и вооруженных конфликтов. Продвижение человечества по пути прогресса проходило бы не так трудно, если бы энергию войны можно было удерживать исключительно в потенциальной форме. Это достижимо и будет достигнуто путем повсеместного внедрения беспроводной энергетики. Тогда вся энергия разрушения без труда окажется под контролем жизнеутверждающих сил мира.

    Содержание и техническое обслуживание боевых судов и других боевых средств сопровождается потрясающим расточительством. Корабль стоимостью двадцать миллионов долларов становится фактически бесполезным по истечении каких-то десяти лет, устаревая по меньшей мере на два миллиона долларов в год, не говоря уже о том, чтобы приносить доход. Вряд ли более чем один корабль из пятидесяти служит своему истинному назначению. Чтобы уменьшить эти разорительные потери и использовать некоторые изобретения, я несколько лет тому назад разработал подробный план. Он был признан целесообразным, но в финансовом и в других отношениях трудновыполнимым. Теперь, когда национальная экономика и боеготовность стали животрепещущими вопросами, он обретает особый смысл и значимость.

    Использование боевых судов в мирное время

    Основная идея состоит в том, чтобы сделать боевые корабли пригодными для рентабельного использования в мирных целях, одновременно улучшая их по ряду свойств. Я осведомлен о внесенном недавно предложении использовать суда в качестве перевозчиков товаров, но этот план непригоден и может стать препятствием на пути дальнейшего совершенствования. Мой проект в первую очередь предполагал установку электрического привода и использование турбодинамо-машин для освещения, энергоснабжения, изготовления различных полезных товаров и предметов на борту корабля или на суше. Это стало бы шагом вперед в направлении современного развития, отвечающего целям и военной, и производственной готовности. Более того, я планировал создание корабля нового типа на совершенно иных принципах, который был бы ценным вкладом в сохранение мира и в гораздо большей степени средством разрушения в военное время. Крейсеры нового типа, если их оборудовать в соответствии с планами министерства военно-морского флота, создадут четыре центральные электростанции, каждая мощностью 180 000 лошадиных сил. Турбины и динамо-машины рассчитаны на максимальную эффективность и действуют в наиболее благоприятном режиме. Рыночная стоимость энергии, которую они способны выработать, составляет несколько миллионов долларов в год, и ее возможно использовать с выгодой в тех местах, где легко добывается топливо, и его удобно подвозить. Эти электростанции могли бы оказаться исключительно полезными в случае возникновения чрезвычайных обстоятельств. Их можно было бы быстро направлять в любую точку на побережье Соединённых Штатов Америки или в любое другое место, и это дало бы возможность правительству оказывать незамедлительную помощь в любое необходимое время.

    Но это не всё. Есть другой, еще более убедительный довод в пользу принятия электрического способа. Он основан на понимании того, что в недалеком будущем имеющиеся ныне средства и методы ведения войны претерпят коренные изменения посредством новых методов применения силы электрического взаимодействия.

    «New York Herald», 25 февраля 1917 г.

    52

    Знаменитые научные заблуждения

    Человеческий мозг со всеми его удивительными возможностями и мощью представляет собой тем не менее далеко не безупречный аппарат. Большинство его отделов могут находиться в превосходном рабочем состоянии, но какие-то доли мозга оказываются атрофированными, неразвитыми или вообще отсутствуют. Великие люди всех сословий и профессий — ученые, изобретатели и прожженные финансисты — оставили свой след в истории в виде невероятных теорий, недействующих механизмов и неосуществимых проектов. Сомневаюсь, что найдется хотя бы одна безошибочная авторская работа. Не существует такого явления, как непогрешимость мозга. Гениальный человек, в высшей степени практичный, чье имя стало притчей во языцех, потратил лучшие годы своей жизни на утопическое предприятие. Прославленный физик оказался неспособным проследить направление электрического тока по правилу, доступному ребенку. Писатель, известный своей способностью воспроизводить наизусть целые тома, совершенно не в состоянии запомнить и перечислить в нужном порядке слова, обозначающие цвета радуги, и ему удается восстановить истину только после длительного и напряженного размышления, как это ни может показаться странным.

    Наши органы чувств также несовершенны и обманчивы. Поскольку жизнь воспринимается нами как ряд быстро чередующихся картин, многие наши восприятия представляют собой лишь иллюзию чувств, оторванную от реальности. Человек одерживал величайшие победы, когда его сознанию удавалось освободиться от обманчивого представления. Таково было просветление Будды, которое само есть иллюзия, вызванная устойчивостью и непрерывностью мысленных образов; триумф Коперника, открывшего, что, вопреки всем наблюдениям, наша планета вращается вокруг Солнца; утверждение Декарта, что человек есть автомат, управляемый извне; и представление о Земле как о шаре, которое привело Колумба к открытию Американского континента. И хотя интеллект каждого из индивидуумов дополняет друг друга, а наука и практика постоянно устраняют ошибки и неверные представления, большая часть нашего сегодняшнего знания всё еще несовершенна и недостоверна. У нас существуют математические софизмы, несостоятельность которых мы можем доказать. Даже в теоретических рассуждениях, свободных от символистских ухищрений, нас зачастую останавливает сомнение, которое не в силах рассеять способнейшие умы. Даже экспериментальная наука, наиболее точная из всех, небезошибочна.

    Ниже я рассмотрю исключительно любопытные ошибки в толковании и практическом применении физических явлений; эти заблуждения долгие годы господствовали в умах экспертов и ученых.

    I. Иллюзия осевого вращения Луны

    С тех пор как Галилей сделал свое открытие, общеизвестным стал факт, что Луна, перемещаясь в пространстве, всегда обращена к Земле одной стороной. Это объясняется тем, что, делая один оборот вокруг своей планеты-матери, Луна совершает только один оборот вокруг своей оси. Вращательное движение небесного тела должно подвергаться изменениям с течением времени: или замедляться под влиянием сопротивления, внутреннего или внешнего, или ускоряться вследствие сжатия или других причин. Неизменная скорость вращения на протяжении всех фаз космической эволюции явно невозможна. В таком случае это просто чудо, что в данный момент своего долгого существования наш спутник должен вращаться именно так — не быстрее и не медленнее. Однако многие астрономы признают как доказанный факт, что такое вращение имеет место. В действительности этого нет, есть только видимость, это иллюзия, к тому же весьма удивляющая.


    Ил. 1. Известно, что Луна (М) всегда обращена к Земле (Е) одной стороной, как показывают черные стрелки. Параллельные лучи, исходящие от Солнца, освещают Луну в ее последовательных орбитальных позициях, как показывают незаштрихованные полукруги. С учетом этого, считаете ли вы, что Луна вращается вокруг своей оси?


    Я постараюсь разъяснить это, прибегнув к иллюстрации 1, в которой Е — Земля, а М — Луна. Луна перемещается в космическом пространстве так, как показывает стрелка, нанесенная на нее, и всегда занимает указанную позицию относительно Земли. Если кто-либо сможет представить, что он смотрит вниз на орбитальную плоскость и отслеживает движение, он уверится, что Луна и вправду вращается на своей оси, совершая оборот вокруг Земли. Вот здесь-то наблюдатель и допустит ошибку. Чтобы он окончательно убедился в своем заблуждении, возьмем шайбу, таким же образом отмеченную, и, прижимая центр шайбы так, чтобы она могла вращаться, будем перемещать ее вокруг неподвижного объекта, всё время удерживая стрелку направленной на этот объект. Несмотря на то что, согласно его личному зрительному восприятию, диск будет вращаться на своей оси, такого вращения нет в природе. Наблюдатель сможет тотчас же рассеять эту иллюзию, удерживая шайбу в фиксированном состоянии и одновременно перемещая ее по кругу. Теперь он без труда заметит, что предполагаемое осевое вращение лишь кажущееся, это лишь впечатление, создаваемое последовательными изменениями положения в пространстве.


    Ил. 2. Концепция вращения Луны (М) вокруг Земли (Е), предлагаемая Теслой. Луна, согласно гипотезе, демонстрируемой на этой схеме, рассматривается в качестве тела, погруженного в однородную массу М1. Если, как все считают, Луна вращается, это может быть в той же степени верно для части массы М2, а часть, общая для обоих тел, вращалась бы одновременно во «встречных» направлениях


    Но можно получить более убедительные доказательства того, что Луна не вращается и не может вращаться вокруг своей оси. С этой целью обратим внимание на иллюстрацию 2, где и спутник М, и Земля Е представлены помещенными в однородную массу М1, обозначенную точечным пунктиром, которая должна вращаться, чтобы сообщить Луне ее естественную поступательную скорость. Очевидно, что, если бы лунный шар мог вращаться, как все считают, это было бы в той же степени верно для любой другой части массы М1, например, для сферы М2, обозначенной пунктиром, и тогда часть, общая для обоих тел, должна будет вращаться одновременно во встречных направлениях. Это можно проиллюстрировать экспериментально предложенным выше способом, используя вместо одной две перекрывающие одна другую вращающиеся шайбы, что можно легко представить в виде кругов М и М2 и перемещать их вокруг центра Е так, чтобы сплошные и пунктирные стрелки всегда указывали на этот центр. Нет необходимости приводить какие-либо дополнительные доводы, чтобы доказать, что два круговых движения не могут сосуществовать, их невозможно даже представить в воображении и согласовать чисто теоретически.

    Дело в том, что так называемое «осевое вращение» Луны есть явление обманчивое, вводящее в заблуждение как зрение, так и сознание, оно лишено физического смысла. Оно не имеет ничего общего с подлинным вращением массы, которому свойственны определенные и несомненные характеристики. Уже написаны тома на эту тему и выдвинуто много ложных аргументов в поддержку этого заблуждения. В результате делается вывод, что если бы Луна не вращалась на своей оси, она выставляла бы на земное обозрение всю поверхность, а поскольку видна половина, она должна вращаться. Первое утверждение верно, но логика второго ущербна, так как она допускает лишь одну альтернативу. Вывод не имеет под собой оснований, поскольку такой же результат можно получить и другим способом. Луна всё-таки вращается, но не самостоятельно, а вокруг оси, проходящей через центр Земли — этот вывод истинный и единственный.

    Несомненно безошибочным доказательством вращения массы является наличие энергии движения. Луна не обладает кинетической энергией такого рода. Если бы это имело место, то вращающееся тело, пусть это будет М1, содержало бы механическую энергию, отличную от той, о которой мы имеем экспериментальное подтверждение. Вне зависимости от этого совмещение между осевым и орбитальным периодами само по себе является в высшей степени невероятным, поскольку это не перманентное состояние, к которому стремится система. Любое осевое вращение, предоставленное само себе, замедляется под воздействием сил, внешних или внутренних, и должно прекратиться. Даже если допустить, что оно полностью управляется приливно-отливными движениями океана, такое совпадение было бы поразительным. Но если мы вспомним, что большинство спутников обнаруживают это характерное свойство, вероятность совпадения становится бесконечно малой.

    Были выдвинуты три теории относительно происхождения Луны. Согласно самой ранней, предложенной великим немецким философом Кантом и развитой Лапласом в его монументальном трактате «Небесная механика», планеты выбрасываются из более обширных серединных масс центробежной силой. Почти сорок лет тому назад профессор Джордж Г. Дарвин в мастерски написанном реферате о приливно-отливном трении представил математические доказательства, считающиеся неопровержимыми, что Луна отделилась от Земли. В последнее время эта признанная теория подвергается критике со стороны профессора Т. Дж. Дж. Си в его выдающемся труде «Эволюция звёздных систем», в котором он утверждает, что центробежная сила совершенно недостаточна, чтобы осуществить отделение, и что все планеты, включая Луну, зарождаются в глубинах космического пространства и затягиваются в поле гравитации. Существует еще и третья теория неизвестного происхождения, которая рассмотрена и прокомментирована профессором У.-Г. Пикерингом и согласно которой Луна оторвалась от Земли, когда последняя частично уплотнилась. Это привело к образованию континентов, которые, вероятно, не могли сформироваться иным способом.

    Несомненно, планеты и спутники зарождаются и тем, и другим способом, и, по моему мнению, выяснить характер их происхождения нетрудно. Не рискуя ошибиться, можно сделать следующие выводы:

    1. Небесное тело, отброшенное от более крупного, не может вращаться на собственной оси. Масса, превратившаяся в жидкость под комплексным воздействием теплоты и давления, после снижения последнего немедленно застывает, одновременно подвергаясь деформации, вызванной гравитационным притяжением. Образовавшаяся форма обретает постоянные очертания после охлаждения и отвердевания, и меньшая масса продолжает двигаться вокруг большей, как если бы она была жестко соединена с ней, если не считать маятниковых колебаний, или вибраций, вследствие изменения орбитальной скорости. Такое движение исключает возможность осевого вращения в строго физическом смысле. Луна никогда не вращалась, и это наглядно демонстрирует тот факт, что точнейшими измерениями не удается доказать хоть какое-то сплющивание шара.

    2. Если планетарное тело, двигаясь орбитально, обращено одной и той же стороной к основному телу, это со всей определенностью доказывает, что оно отделилось от последнего и является подлинным спутником.

    3. Планета, вращающаяся на своей оси, совершая движение вокруг другой планеты, не может быть отброшена от вышеупомянутой, но должна образоваться под воздействием сил гравитации.

    II. Ошибочность остроконечного молниеотвода Франклина

    Проявление атмосферного электричества с давних пор было одним из самых удивительных зрелищ, которые дано наблюдать человеку. Грандиозность и мощь наполняли его благоговейным страхом и суевериями. В течение многих столетий он объяснял молнию проявлением богоподобных и сверхъестественных сил, а ее назначение в системе нашей Вселенной оставалось для него неведомым. Теперь мы знаем, что вода в океане испаряется под воздействием Солнца и остается в атмосфере в виде тонкой суспензии, что она переносится в отдаленные регионы земного шара, где силы электрического взаимодействия активизируются и нарушают неустойчивый баланс, вызывая выпадение осадков, поддерживая таким образом всю органическую жизнь. Есть все основания надеяться, что в скором времени человек сможет управлять этим животворным потоком воды и благодаря этому решить многие насущные проблемы своего существования.

    Атмосферное электричество пробудило к себе особый интерес во времена Франклина. Фарадей еще не объявил о своих эпохальных открытиях в области магнитной индукции, но машины статического трения уже повсеместно применялись в физических лабораториях. Вместе с тем Франклин с его могучим интеллектом сделал огромный шаг вперед, придя к заключению, что статическое электричество и атмосферное электричество идентичны. С современной точки зрения для нас это умозаключение вполне очевидно, но в его время одна лишь мысль об этом была на грани богохульства. Он исследовал это явление и доказал, что если они имеют одну природу, то из облаков можно извлекать их заряд точно так же, как из шарового разрядника электростатической машины, и в 1749 году в научной статье наметил в общих чертах, как можно разрядить такое облако с помощью остроконечных металлических стержней.

    Первые испытания провел во Франции Долибран, а сам Франклин в июне 1752 года впервые получил искровой разряд, используя змейковый аэростат. Когда в наше время такие атмосферные разряды сказываются на работе нашей радиостанции, мы испытываем досаду и надеемся, что они прекратятся, но для человека, открывшего их, они принесли слезы радости.

    Тросовый молниеотвод в его классическом виде был изобретен Бенджамином Франклином в 1755 году, он сразу же получил признание. Однако, как обычно бывает, его достоинства нередко преувеличивались. Так, например, вполне серьезно утверждалось, что в городе Пиатермарицбурге (столица провинции Натай в Южной Африке) не случилось ни одного удара молнии после установки остроконечных стержней, хотя грозы происходили с такой же частотой, как и ранее. Опыт доказывает, что истина как раз в обратном. На современный город, такой как Нью-Йорк, ощетинившийся бесчисленными заостренными наконечниками и шпилями, хорошо заземленными, приходится значительно больше молний, чем на эквивалентную территорию в сельской местности. Статистические данные, тщательно собираемые и периодически публикуемые, доказывают, что опасность, исходящая от молнии, для имущества и жизни человека снизилась до нескольких процентов благодаря изобретению Франклина, но ущерб от пожаров тем не менее ежегодно возрастает, достигая нескольких миллионов долларов. Поразительно, что это устройство, повсеместно применяемое в течение более полутора веков, как оказалось, содержит грубую ошибку в проектировании и конструкции, что снижает его полезное действие и может даже сделать его применение опасным при определенных условиях.


    Ил. 3. Схема, с помощью которой автор демонстрирует ошибку в конструкции остроконечного молниеотвода Франклина и логически доказывает, что заряженную сферу можно, для наглядности, рассматривать как нагретую до высокой температуры, тепловая энергия которой свободно выделяется с заданной интенсивностью


    Для пояснения этого любопытного обстоятельства я позволю себе сослаться на иллюстрацию 3, в которой s — металлическая сфера с радиусом r, подобная емкостному терминалу электростатической машины, снабженная остроконечным выводом длиной h. Известно, что последний обладает свойством быстро рассеивать аккумулированный заряд в атмосферу. Чтобы разобраться в механизме этого действия в свете сегодняшнего знания, мы можем уподобить электрический потенциал температуре. Представим, что сфера s нагрета до температуры Т и что вывод, или металлический стержень, является превосходным проводником теплоты, так что его крайняя точка имеет ту же самую температуру Т. Тогда, если другая сфера с бoльшим радиусом r1 вращается вокруг первой и имеет температуру Т1 по контуру, очевидно, что между оконечностью стержня и окружающей средой возникнет разность температур, равная Т — Т1, что обусловит отток теплоты. Конечно, если бы нагретая сфера не влияла на окружающую среду, эта разность температур была бы большей, и выделялось бы больше теплоты. В точности то же самое происходит в электрической схеме. Пусть q означает количество заряда, тогда сфера, а вследствие ее высокой проводимости и стержень будут иметь потенциал q/r. Потенциал среды вокруг острия стержня составит

    q/r1q / r + h и следовательно, их разность будет равна

    q/r — q / r + h = qh / r(r + h)

    Теперь допустим, что применена сфера S с гораздо большим радиусом R = nr и с зарядом Q, тогда, по аналогии, разность потенциалов будет равна Qh/R(R + h). Согласно элементарным законам электростатики потенциалы двух сфер s и S будут равны, если Q = nq, и в таком случае Qh/R(R + h) = nqh/nr(nr + h) = qh/r(nr + h). Таким образом, разность потенциалов между острием стержня и окружающей его средой будет меньше в пропорции r + h/nr + h, когда используется большая сфера. В ходе многих научных проверок и опытов это важное наблюдение не принималось во внимание, что в результате привело к серьезным заблуждениям. Его значение состоит в том, что свойства заостренного стержня полностью зависят от линейных размеров электризуемого тела. Свойство стержня отдавать заряд может быть полностью утрачено, если последний будет очень большим. По этой причине все заостренные концы и выступы на поверхности проводника таких огромных размеров, как Земля, были бы совершенно бесполезны, если бы не иные факторы. Пояснения по этому поводу будут даны со ссылкой на иллюстрацию 4, в которой наш мастер импрессионизма наглядно демонстрирует высказывание Франклина о том, что его стержень извлекает электричество из облаков. Если бы Земля не была окружена атмосферой, которая обычно имеет противоположный заряд, она бы вела себя, несмотря на все неровности поверхности, подобно отполированному шару. Но по причине наэлектризованности воздушных масс и облаков отдача электричества в значительной степени снижается. Таким образом, на иллюстрации 4 мы видим, что положительный заряд облака взаимодействует с эквивалентным разноименным зарядом в Земле, плотность которого на поверхности последней уменьшается с кубом расстояния от статического центра облака. Тогда кистевой электрический разряд образуется на конце стержня и совершаются действия, которые прогнозировал Франклин. Кроме того, происходит ионизация окружающего воздушного пространства, оно становится проводником, и в итоге молния может поразить здание или какой-либо другой близлежащий объект. Эффективность остроконечного молниеотвода, по замыслу Франклина, состояла в рассеивании заряда, но на деле оказалось не так. Точные замеры показывают, что пройдет немало лет, прежде чем электричество, аккумулированное в одном облаке средней величины, будет отведено или нейтрализовано посредством такого молниеотвода. Заземленный стержень способен сделать безвредным большинство получаемых им ударов молнии, впрочем, время от времени заряд уходит в сторону и причиняет ущерб. Однако на что очень важно обратить внимание: он провоцирует возникновение опасных и рискованных моментов вследствие ошибки, заложенной в его конструкции. Заостренный конец, считавшийся полезным и совершенно необходимым для его функционирования, является в действительности недостатком, значительно принижающим утилитарное значение устройства. Я построил значительно улучшенный образец грозозащитного разрядника, для которого характерно применение терминала значительной площади и большого радиуса кривизны, что делает невозможной чрезмерную плотность заряда и ионизацию воздушной массы[11]. Такие грозозащитные разрядники действуют как квазирепелленты и до настоящего времени ни разу не были пробиты, несмотря на то что подвергаются этой опасности в течение долгого времени. Их безопасность доказана экспериментально, и они значительно превосходят в этом качестве изобретение Франклина. Их применение может сберечь ежегодно утрачиваемое имущество стоимостью миллионы долларов.


    Ил. 4. Рисунок остроконечного молниеотвода Франклина, которым Тесла доказывает, что такой заостренный вывод, как правило, не смог бы и за многие годы извлечь электричество из одного-единственного облака

    III. Странное недоразумение в области радиосвязи

    Для массового сознания это сенсационное достижение создает впечатление одного-единственного открытия, но в действительности это метод, успешное применение которого несет в себе использование огромного количества открытий и усовершенствований. Я представлял себе это достижение именно в таком свете, когда брался за решение проблем в области беспроводной связи, и именно благодаря этому обстоятельству мое понимание основных принципов этого метода не вызывало сомнений с самого начала.

    В процессе работы над асинхронными электродвигателями у меня возникло желание испытать их на большой скорости, и с этой целью мною сконструированы генераторы переменного тока сравнительно высоких частот. Вскоре поразительные свойства токов захватили всё мое внимание, и в 1899 году я приступил к систематическому исследованию их характеристик и возможностей применения на практике. Первым доставившим радость результатом моих усилий в этом направлении была передача электрической энергии по единственному проводу без обратного, о чем рассказывал в своих лекциях и выступлениях перед несколькими научными обществами здесь и за границей в 1891 и 1892 годах. В этот период, когда я работал с колебательными преобразователями и генераторами на частотах до 200 000 циклов в секунду, меня всё более стала захватывать идея использования Земли вместо провода, позволяющая полностью обходиться без проводника. Необъятность земного шара казалась непреодолимым препятствием, но после длительного изучения предмета я убедился, что это дело стоящее, и в своих лекциях перед Институтом Франклина и Национальной ассоциацией электрического освещения в начале 1893 года представил основные положения системы, какой ее себе представлял. Во второй половине того же года на Всемирной выставке в Чикаго мне посчастливилось встретиться с профессором Гельмгольцем, которому я рассказал о своем проекте, иллюстрируя его экспериментами. Пользуясь случаем, попросил выдающегося физика высказать свое мнение об осуществимости плана. Он не колеблясь заявил, что это практически выполнимо при условии, что я смогу довести до совершенства оборудование, способное осуществить задуманное, но довести это до конца, как он предупредил, будет чрезвычайно трудно.

    Я продолжал работать с большим воодушевлением и с того дня до 1896 года продвигался вперед медленно, но неуклонно, осуществляя ряд усовершенствований, главным из которых были мой комплекс из связанных резонансных контуров и метод автоматической регулировки, ныне принятый повсеместно. Летом 1897 года лорду Кельвину случилось быть проездом в Нью-Йорке, и он оказал мне честь, посетив мою лабораторию, где я смог продемонстрировать экспериментальные доказательства в пользу своей теории беспроводной связи. То, что он увидел, явно заинтересовало его, но тем не менее Кельвин забраковал мой проект в категорических выражениях, квалифицируя его как нечто невозможное, как «иллюзию и западню». Я был огорчен и удивлен, поскольку предвкушал получить его поддержку. Но на следующий день он вернулся, и сложилась более благоприятная ситуация, позволившая дать пояснения успешным результатам, которых я добился, и изложить истинные, основополагающие принципы созданной мной системы. Он неожиданно заметил с явным изумлением: «Так Вы, значит, не используете волны Герца?» — «Конечно, нет, — ответил я, — они являются излучениями. Никакую энергию невозможно передать с экономической выгодой на расстояние посредством всех излучений такого рода. В основе моего метода лежит истинная проводимость, которая осуществляется на самом большом расстоянии без заметных потерь». Я никогда не смогу забыть магическое превращение, произошедшее со знаменитым философом в тот момент, когда он избавился от этого ложного представления. Скептик, который упорно отказывался понимать, вдруг преобразился в самого горячего приверженца. Он распрощался со мной, не только будучи полностью убежденным в научной правильности идеи, но выразил твердую уверенность в ее успехе. Излагая ему свои мысли, я прибегнул к следующим механическим аналогиям моего метода и метода, основанного на волнах Герца.


    Ил. 5. Созданная Теслой глобальная система передачи электрических сигналов, а также света и энергии представлена теоретически в виде аналогии для осмысления. Эксперименты Теслы с разрядами длиной сто футов и напряжением миллионы вольт показали, что волны Герца чрезвычайно неэффективны и невосполнимы; волны Теслы восполняемы и распространяются с большой скоростью сквозь Землю. Радиоинженеры начинают постепенно понимать, что законы распространения волн, изложенные Теслой более четверти века тому назад, в настоящее время создают реальную и перспективную основу беспроводной передачи


    Представьте себе Землю в виде резинового шара, наполненного водой, некоторое количество которой периодически нагнетается и столько же забирается с помощью возвратно-поступательного насоса, как показано на рисунке. Если ход поршня насоса производится с интервалом более одного часа и сорока восьми минут, достаточным для прохождения импульса через всё материальное тело, шар в целом будет расширяться и сжиматься, и соответствующие движения будут сообщаться датчикам давления или подвижным клапанам с той же интенсивностью независимо от расстояния. При ускоренной работе насоса образуются более короткие волны, которые, достигнув противоположной стороны шара, могут отражаться и вызывать образование стационарных узлов и пучностей, но поскольку жидкость не поддается сжатию, ее оболочка идеально эластична, а частота колебаний не очень высока, энергия будет передаваться экономично до тех пор, пока на токоприемниках не совершится какая-либо работа, потери энергии будут очень небольшими. Хотя и в общих чертах, но это верное представление моей беспроводной системы, в которой я тем не менее провожу разного рода усовершенствования. Так, например, насос стал частью резонансной системы с большой силой инерции, которая чрезвычайно увеличивает интенсивность посылаемых импульсов. Приемные устройства точно так же приведены в соответствующее состояние, и таким образом, количество энергии, аккумулированной в них, в значительной степени возрастает.

    Принцип действия волн Герца является во многих отношениях полной противоположностью. Чтобы объяснить это с помощью аналогии, поршень насоса должен совершать возвратно-поступательные движения с колоссальной скоростью, и отверстие, через которое жидкость проходит в цилиндр и обратно, надо значительно уменьшить. Нет почти никакого движения жидкости, и почти вся совершаемая работа уходит в инфракрасное излучение, чрезвычайно малая часть которого используется расположенным на расстоянии потребителем. Невероятно, но факт, что сознанием некоторых способнейших специалистов с самого начала и до сих пор владеет эта нелепая идея, и дело обстоит таким образом, что подлинный беспроводной метод, основу которого я заложил в 1893 году, встречает сопротивление вот уже двадцать лет. Вот почему «радиопомехи» оказались неодолимыми, вот почему беспроводная система мало используется, и почему правительство вынуждено было вмешаться.


    Ил. 5а. Умеренно разреженная электропроводящая атмосфера над изолирующим слоем


    Ил. 6. Чертеж сегмента Земли и ее атмосферной оболочки. Очевидно, что электромагнитные излучения не смогут пройти сквозь такой тонкий слой между двумя токопроводящими поверхностями на какое-либо значительное расстояние, не будучи поглощенными, как считает доктор Тесла, рассматривая волновую теорию эфирного пространства


    Мы живем на планете почти непостижимых размеров, окруженной изолирующим атмосферным слоем, поверх которого имеется разреженная и токопроводящая газообразная среда (ил. 5 а). Это ниспослано Провидением, так как если бы вся атмосфера была токопроводящей, то передача электрической энергии через естественную среду стала бы невозможной. Мои первые опыты доказали, что токи высокой частоты и очень большого напряжения без труда проходят сквозь атмосферу умеренно разреженную, так что изолирующий слой уменьшен до небольшой толщины, в чем можно убедиться при внимательном рассмотрении иллюстрации 6, на которой часть Земли и ее газообразная оболочка изображены в масштабе. Если радиус сферы равен 12? дюйма, то толщина непроводящего слоя составляет лишь 1/64 дюйма, и совершенно очевидно, что волны Герца не смогут пройти сквозь такую тонкую щель между двумя токопроводящими поверхностями на какое-либо значительное расстояние, не будучи поглощенными. Всерьез выдвигается теория, что эти излучения проходят вокруг земного шара благодаря последовательным отражениям, но чтобы доказать абсурдность этого предположения, сошлемся на иллюстрацию 7, где этот процесс представлен в виде схемы. Допустим, что рефракция отсутствует, тогда излучение, как это видно справа, будет распространяться вдоль сторон вписанного в токопроводящий газообразный пояс многоугольника, описывающего твердое тело, и длина стороны составит около четырехсот миль. Так как длина половины окружности Земли равна приблизительно 12 000 миль, образуется примерно тридцать углов девиации. Коэффициент полезного действия такого рефлектора не может превышать 25 процентов, так что если бы не было других потерь передаваемой энергии, то доля регенерированной энергии измерялась бы дробью (?)30. Пусть передатчик излучает электромагнитные волны мощностью 1 000 киловатт. Тогда всё, что будет аккумулировано в идеальном приемнике, составит одну стопятнадцатимиллиардную часть одного ватта. В действительности, количество отражений будет гораздо больше, чем показано в левой части иллюстрации, так что по этой и иным причинам, на которых нет необходимости останавливаться, регенерируемое количество энергии будет выражаться числом, стремящимся к нулю.


    Ил.7.Всерьез выдвигается теория, которой пытаются убедить, что волновые колебания эфира проходят вокруг Земли благодаря последовательным отражениям, как показано на чертеже. Коэффициент полезного действия такого рефлектора не может превышать 25 процентов; при этом количество энергии, регенерируемой на расстоянии 12 000 миль, будет равно одной стопятнадцатимиллиардной части одного ватта при мощности передатчика 1 000 киловатт


    Рассмотрим теперь процесс передачи энергии, осуществляемый с применением изобретенных мной средств и методов. С этой целью обратим внимание на иллюстрацию 8, которая дает представление о характере распространения волн тока и не требует долгих объяснений. Чертеж представляет солнечное затмение с тенью Луны, чуть касающейся поверхности Земли в том месте, где расположен передатчик. Так как тень перемещается вниз, она будет охватывать поверхность Земли сначала с очень большой, а затем постепенно уменьшающейся скоростью, пока на расстоянии около 6 000 миль не достигнет своей обычной скорости в пространстве. С этого момента она будет продолжать движение с возрастающей скоростью, достигая бесконечного значения в противолежащей точке земного шара. Вряд ли требуется констатация того, что это просто иллюстрация, а не точная картина в астрономическом смысле.


    Ил. 8. Эта схема показывает, как во время солнечного затмения лунная тень проходит по Земле с переменной скоростью, ее следует рассматривать в связи с иллюстрацией 9. Тень движется вниз сначала с бесконечно большой скоростью, затем со своей истинной космической скоростью и в конце концов опять с бесконечно большой скоростью


    Точный закон можно без труда понять, разобрав иллюстрацию 9, в которой передающий контур соединен с Землей и с антенной. Когда передатчик работает, достигается два эффекта: электромагнитные волны проходят через воздушную среду, а ток проходит сквозь Землю. Первые распространяются со скоростью света, и их энергия невозместима в цепи. Второй продолжает течь с меняющейся скоростью в зависимости от косеканса угла, который образует радиус, проведенный из любой произвольной точки на оси симметрии волн. Вначале скорость бесконечно большая, но постепенно уменьшается, до тех пор пока не будет пройдена четверть окружности, когда она сравняется со скоростью света. С этого момента вновь возрастает, становясь бесконечно большой на противоположной стороне. В идеале энергия такого тока может быть регенерирована без потерь в приемниках, настроенных соответствующим образом.


    Ил. 9. Электромагнитные волны, излучаемые горизонтально от вертикально расположенного проводника, подвергаются разрушительному воздействию токопроводящей поверхности Земли. Энергия не может быть регенерирована


    Некоторые эксперты, которые, как я считал, обладают большой эрудицией, в течение ряда лет утверждали, что мой проект передачи энергии без проводов является сущей чепухой, но надо заметить, что их высказывания с каждым днем становятся всё более осторожными.

    Самое свежее возражение против моего метода заключается в дешевизне бензина. Эти люди жестоко заблуждаются, считая, что энергия изливается во всех направлениях и поэтому один приемник может уловить лишь незначительное ее количество. Но это далеко не так. Энергия передается только в одном направлении, от передатчика к приемнику, и никакая ее часть не теряется в каком-либо другом месте. В любой точке земного шара абсолютно реально регенерировать количество энергии, достаточное для приведения в действие самолета или прогулочного судна или освещения жилищ. Я особенно оптимистичен в отношении освещения изолированных помещений и считаю, что более экономичный и удобный способ едва ли можно изобрести. Будущее покажет, окажется ли мое предвидение столь же точным, каким оно было до сих пор.

    «Electrical Experimenter», февраль, 1919 г.

    53

    Вращение Луны

    С момента появления моей статьи, озаглавленной «Знаменитые научные заблуждения», в февральском номере вашего журнала я получил несколько писем с критикой моих взглядов относительно осевого вращения Луны. Я отчасти ответил на них, опубликовав свое понимание вопроса в «New York Tribune» от 23 февраля, что дает мне возможность ссылаться на эту публикацию.

    В номере от 2 февраля г-н Шарль Е. Маньер, комментируя мою статью, которая появилась в «Tribune» 26 января, выражает настойчивое желание узнать мое определение осевого вращения.

    Я считал, что достаточно конкретно высказался по этому вопросу, о чем можно судить по следующей фразе: «Безошибочным критерием вращения массы материального тела является тем не менее наличие энергии движения. Луна не обладает такой кинетической энергией». Этим я хотел сказать, что осевое вращение есть не просто вращение на оси, согласно бесстрастному словарному определению, но круговое движение в истинном физическом смысле, то есть такое движение, при котором половина произведения массы на квадрат скорости есть определенная и положительная величина. Луна является телом почти сферической формы с радиусом около 1 085,5 мили, из чего я вывожу ее объем, равный приблизительно 5 300 216 300 кубических миль. Поскольку ее средняя плотность равна 3,27, то один кубический фут образующего ее вещества весит почти 205 фунтов. Общий вес спутника, соответственно, составляет около 79 969 000 000 000 000 000, а его масса 2 483 500 000 000 000 000 земных коротких тонн. Если допустить, что Луна всё же вращается в физическом смысле слова на своей оси, она должна совершать один оборот за 27 суток 7 часов 43 минуты и 11 секунд, или за 2 360 591 секунду. Если, в соответствии с математическими законами, мы представим себе однородную массу, сосредоточенную на расстоянии от центра, равном двум пятым радиуса, тогда расчетная скорость вращения составит 3,04 фута в секунду, при которой шар был бы носителем 11 474 000 000 000 000 000 коротких футо-тонн энергии, достаточной для выработки 1 000 000 000 лошадиных сил за период, равный 1 323 годам. Так вот, я полагаю, что этой лунной энергии не хватит для обеспечения работы тонкого часового механизма.

    В научных трудах по астрономии обычно выдвигается такой аргумент: «Если бы лунный шар не вращался на своей оси, он бы экспонировал Земле все свои стороны. Так как видно немногим более половины поверхности, она должна вращаться». Но это умозаключение ложно, поскольку оно допускает только одну альтернативу. Существует бесконечное множество осей, кроме ее собственной, на каждой из которых Луна может вращаться и по-прежнему проявлять ту же особенность.

    В своей статье я утверждал, что Луна вращается вокруг оси, проходящей через центр Земли, что не совсем верно, но это не умаляет сделанных мной выводов. Хорошо известно, конечно, что два тела вращаются вокруг общего центра тяжести, который находится на расстоянии немногим более 2 899 миль от центра Земли.

    В книгах по астрономии допускается еще одна ошибка в суждении об эквивалентности этого движения и движения груза, вращаемого на нити и в праще. Во-первых, есть существенное различие между этими двумя способами, хотя они и затрагивают один принцип механики. Если металлический шар, прикрепленный к нити, перемещается по кругу, и нить рвется, то результатом будет осевое вращение металлического снаряда, которое, несомненно, родственно по амплитуде и направлению вышеупомянутому движению. Приведем поясняющий пример: если шар перемещается по кругу на нити по часовой стрелке, совершая десять оборотов в секунду, то, когда он отлетит, будет вращаться на своей оси со скоростью десять оборотов в секунду также в направлении часовой стрелки. Совершенно иная ситуация, когда шар выбрасывается из пращи. В этом случае ему сообщается значительно более быстрое вращение в противоположном направлении. В перемещении Луны нет подлинной аналогии с этими вращениями. Если бы гравитационная нить, так сказать, порвалась, спутник отлетел бы по касательной без малейшего отклонения или вращения, ввиду того что ось не обладает моментом вращения и, следовательно, какой бы то ни было тенденцией к вращательному движению.

    Г-н Маньер ошибается в своем предположении относительно того, что могло бы случиться, если бы Земля внезапно исчезла. Предположим, что это могло бы произойти в тот момент, когда Луна находится в противостоянии. Тогда она продолжит движение по своей эллиптической траектории вокруг Солнца, неизменно поворачиваясь к нему той стороной, которая всегда была обращена к Земле. С другой стороны, если Земля исчезла в момент наибольшего кажущегося сближения, Луна понемногу начнет поворачиваться на 180° и после нескольких раскачиваний развернется опять той же самой стороной к Солнцу. В обоих случаях не произойдет никаких периодических изменений, будет вечный день на стороне, обращенной к светилу, и вечная ночь на обратной стороне.

    Некоторые доводы, выдвигаемые журналистами, изобретательны и немало курьезны. Однако ни один довод не является обоснованным.

    Один из авторов представляет Землю в центре круговой орбитальной плоскости со стационарно прикрепленной к периферийной области дискообразной Луной, которая находится во фрикционном или редукторном сцеплении с другим диском того же диаметра, вращающимся на стержне, выступающем из плеча рычага, совершенно независимого от планетарной системы. При этом плечо постоянно удерживается параллельным себе, а поворотный диск, конечно, установлен таким образом, чтобы вращаться на своей оси, когда вращается орбитальная плоскость. Этот привод широко известен, и вращение поворотного диска является таким же очевидным фактором, как вращение орбитальной плоскости. Но Луна в этой модели вращается лишь вокруг центра системы без малейшего углового смещения на своей собственной оси. Это так же верно и для колеса телеги, на которое ссылается этот автор. До тех пор пока оно катится по поверхности Земли, оно поворачивается на оси в истинном физическом смысле. Так как одна из его спиц всегда находится в перпендикулярном положении, колесо по-прежнему вращается вокруг центра Земли, но осевое вращение не имеет места. Те, кто думает, что оно всё-таки происходит, впадают в заблуждение.

    Очевидная ошибка заложена в следующем малопонятном рассуждении. Предположим, что орбитальная плоскость постепенно сжимается, так что в конце концов центры Земли и спутника совпадут, когда последний будет вращаться одновременно вокруг своей собственной и земной оси. Мы можем уменьшить Землю до геометрической точки, а расстояние между двумя планетами до радиуса Луны, не затрагивая систему в принципе, но дальнейшее уменьшение расстояния явно абсурдно и не имеет смысла для обсуждения.


    Ил. 1. Если вы всё еще считаете, что Луна вращается на своей оси, посмотрите на эту схему и внимательно проследите за последовательными положениями, которые занимает один из шаров М, вращаемых ручкой ворота. Замените ручку силой тяжести, и эта аналогия разрешит загадку вращения Луны


    Во всех полученных мной корреспонденциях, хотя и отличающихся манерой изложения, последовательные изменения положения в пространстве ошибочно принимаются за осевое вращение. Так, например, категорическое опровержение моих идей находят в высказывании по поводу того, что Луна экспонирует все стороны другим планетам! Она, конечно, вращается, но ни один из кажущихся признаков не доказывает, что она вращается на своей оси. Даже известный эксперимент с маятником Фуко, несмотря на то что он обнаруживает явление, подобное имеющему место на нашем шаре, демонстрирует лишь движение спутника вокруг некой оси. Выдвинутая мной точка зрения основана не на теории, а на фактах, доказуемых с помощью эксперимента. Это не вопрос дефиниции, каким его хотят видеть. Масса, вращающаяся на своей оси, должна обладать кинетической энергией. Если ее нет, нет и осевого вращения, вопреки всем внешним признакам обратного.


    Ил. 2. Схема вращения грузов, отбрасываемых центробежной силой


    Несколько несложных суждений, основанных на авторитетных законах механики, помогут внести ясность в этот вопрос. Рассмотрим сначала случай с двумя равными грузами w и w1 (ил. 2), вращающимися, как показано, вокруг центра О на нити s. Допустим, что последняя рвется в точке а, тогда оба груза отлетят по касательным к окружностям их вращения вокруг неподвижного тела и, приобретя иные скорости, будут вращаться вокруг их общего центра тяжести о. Если грузы совершают n оборотов в секунду, то скорость внешнего и внутреннего груза будет равна, соответственно, V = 2? (R + r) n и V1 = 2? (R — r) n, а разность VV1 = 4?rn будет определяться длиной круговой траектории внешнего груза. Однако ввиду того, что будет происходить выравнивание скоростей, пока не будет достигнуто среднее значение, мы будем иметь VV1 / 2 = 2?rn = 2?rN, где N — количество оборотов в секунду, совершаемых грузами вокруг их центра тяжести. Тогда, очевидно, грузы продолжат вращаться с присущей им скоростью и в том же направлении. Я твердо знаю, что это так по результатам экспериментов. Отсюда также следует, что шар, как показано на иллюстрации, будет вести себя подобным же образом, так как две полусферические массы могут быть сконцентрированы на своих центрах тяжести т и т1 соответственно, что произойдет на расстоянии от центра О, равном 3/8 r.

    Разобравшись в этом, представьте себе ряд шаров М, поддерживаемых спицами S, которые расходятся лучами из ступицы Н в количестве, указанном на иллюстрации 1, и пусть это устройство вращается, совершая n оборотов в секунду вокруг центра О на подшипниках качения. Потребуется определенное количество работы для доведения конструкции до заданной скорости, когда станет ясно, что она равна половине произведения масс на квадрат тангенциальной скорости. Тогда, если истина в том, что Луна вращается на своей оси, это должно быть справедливо для каждого из шаров, так как они вращаются точно так же. Следовательно, пока система разгоняется до заданной скорости, энергия должна затрачиваться на осевое вращение шаров. Пусть М — масса одного из них, a R — радиус вращения по кругу, тогда энергия вращения будет равна Е = ? М (2?Rn)?. Поскольку, согласно распространенному мнению, за один оборот колеса каждый шар делает один оборот на своей оси, энергия осевого вращения каждого шара будет равна е = ? М (2?r1n)?, где r1 — радиус вращательного движения вокруг оси, равный 0,6325 г. Мы можем иметь шары любой желаемой величины и добиться того, чтобы е составляла значительный процент от Е, и всё же, что доказано экспериментально, каждый из вращающихся шаров содержит лишь энергию Е, и абсолютно никакой энергии не расходуется на мнимое осевое вращение, которое, следовательно, является совершенно иллюзорным. Здесь, однако, можно констатировать нечто еще более занятное. Как я ранее уже указывал, отлетающий шар будет вращаться со скоростью колеса и в том же направлении. Но это вихревое (турбулентное) движение, в отличие от движения пули, ни прибавляет, ни убавляет энергии поступательного движения, которая в точности равна работе, затраченной на сообщение массе экспериментальной скорости.

    Из вышесказанного следует, что для того, чтобы совершить один физический оборот на своей оси, Луна должна иметь угловую скорость, вдвое превышающую присущую ей, и тогда она могла бы иметь количество аккумулированной энергии, как я указывал в вышеупомянутом письме в «New York Tribune», при условии, что радиус вращательного движения составляет 2/5 радиуса тела. Конечно, это вызывает сомнения, так как распределение плотности во внутреннем пространстве неизвестно. Но из характера перемещения спутника можно с уверенностью сделать вывод, что он лишен кинетической энергии на своей оси. Если разделить спутник надвое плоскостью, тангенциальной к орбите, при этом массы двух половин инверсны, как и расстояния от их центров тяжести до центра Земли, и, следовательно, если бы последняя вдруг исчезла, то никакого осевого вращения, как это имеет место в случае с отбрасываемым грузом, не последует.

    «Electrical Experimenter», апрель, 1919 г.

    54

    Резюме о мозге, памяти и мысли

    Хотя я и продолжаю относить себя к идеалистам, моя концепция Вселенной, боюсь, является глубоко материалистической. Как я уже утверждал в некоторых из опубликованных статей, в результате тщательных наблюдений, проводившихся в течение многих лет, я окончательно убедился, что мы являемся всего лишь автоматами, действующими в соответствии с внешними воздействиями, автоматами бесправными и безынициативными. Мозг не есть аккумулятор, как принято считать в философии, и не содержит каких бы то ни было записей фонографического или фотографического характера. Другими словами, не существует накопленных знаний или воспоминаний, как обычно считают, наша память пуста. Мозг всего лишь обладает свойством реагировать, становясь всё более восприимчивым, а так как воздействия часто повторяются, в результате появляется память.

    Тем не менее много лет тому назад я обратил внимание на вероятность того, что в конечном счете мы сможем преуспеть не только в безошибочном чтении мыслей, но и в точном воспроизведении любого мысленного образа. К этому можно прийти путем анализа сетчатки, которая является инструментом передачи воздействий на нервные центры и способна также служить индикатором происходящих внутри мысленных процессов. Очевидно, когда виден объект, осознание внешней формы может происходить исключительно благодаря тому обстоятельству, что те колбочки и палочки сетчатки, на которые падает отражение, подвергаются иному воздействию, чем остальные. Не будет слишком рискованной гипотеза, допускающая, что визуализация сопровождается рефлекторным (зеркальным) воздействием на сетчатку, которое можно обнаружить с помощью соответствующих приборов. Таким образом, в будущем может быть вполне вероятным также и проецирование рефлекторного (зеркального) изображения на экран, и совершенствуя принцип, лежащий в основе движущихся картин, непрерывную игру мысли можно сделать видимой, записывать и воспроизводить по желанию.

    «Electrical Experimenter», июнь, 1919 г.

    55

    Вращение Луны

    Просматривая свою статью «Вращение Луны», опубликованную в апрельском номере «Electrical Experimenter», я добавил несколько замечаний к первоначальному тексту, желая подкрепить и разъяснить выдвинутую концепцию. Вследствие типографской ошибки они были пропущены, и поэтому я счел необходимым отправить еще одно письмо, которое, к сожалению, было получено слишком поздно, чтобы войти в майский номер. Между тем я получил много писем, в которых некоторые явления, свойственные вращающимся телам, например, лунные либрации по долготе, выдаются за доказательства наличия энергии, вызывающей вращательное движение, то есть за подтверждение осевого вращения спутника в истинном физическом смысле. Я полагаю, что нижеследующее более подробное изложение снимет все выдвигаемые возражения и обратит тех, кого пока еще не удалось убедить, в приверженцев моих взглядов.


    Ил. 1. Для определения кинетической энергии вращающейся массы на этой схеме предлагается выделить ряд точек внутри прямого стержня, или массы М, таким образом, чтобы они были расположены последовательно на расстояниях от оси вращения О. Зная их числовое выражение и скорость вращения, можно без труда вычислить кинетическую энергию массы


    Кинетическую энергию вращающейся массы можно измерить четырьмя способами, которые представлены на схемах в иллюстрациях 1, 2, 3 и 4 и, возможно, окажутся в той или иной степени полезными.

    Согласно иллюстрации 1, для этого способа необходимо наметить разумный ряд точек, например, O1 O2, O3 и т. д. внутри прямого стержня, или массы М, соответственно, на расстояниях r1, r2, r3 и т. д. от оси вращения О и вычислить квадратный корень среднего квадрата этих расстояний. Пусть величина Rg обозначает радиус инерции [массы], тогда ее фактическая скорость при n оборотах в секунду будет равна Ve = 2?rRgп, а кинетическая энергия Е = ?MVe? = ?M(2?rRgn)?.


    Ил. 2. В этом случае масса М, вращающаяся со скоростью n оборотов в секунду вокруг оси О, разделена на множество элементов (секторов), или малых частей, на различных радиусах от О. Зная кинетическую энергию каждой части, легко определить кинетическую энергию всей массы путем сложения отдельных величин


    На иллюстрации 2 масса М, совершающая п оборотов в секунду вокруг оси О под прямым углом к плоскости бумаги, разделена на множество элементов (секторов), или малых частей; наиболее удобны очень тонкие концентрические пластины, например, l1, l2, l3 и т. д. на расстояниях r1, r2, r3 и т. д. от О. Поскольку кинетическая энергия каждой части равна половине произведения ее массы и квадрата скорости, сумма всех этих энергий составных частей

    E = ??mV? = ?m1V12 + ?m2V22 + ?m3V32 +… =

    ?m1(2?r1n)? + ?m2(2?r2n)? + ?m3(2?r3n)? +…


    Ил. 3. Иная форма выражения энергии вращающегося тела может быть получена путем определения его момента инерции. При этом масса М разделена на мельчайшие части m1, m2, m3 и т. д. Сумма произведений этих масс на квадраты их расстояний есть момент инерции, который, в зависимости от угловой скорости, составляет кинетическую энергию Е


    Иная форма выражения энергии вращающегося тела может быть получена путем определения его момента инерции. С этой целью масса М (ил. 3), вращающаяся со скоростью п оборотов в секунду вокруг оси О, разделена на мельчайшие части, обозначаемые m1, m2, m3 и т. д., соответственно на расстояниях r1, r2, r3 и т. д. от вышеупомянутой оси. Сумма произведений всех этих малых масс на квадраты их расстояний есть момент инерции I, и тогда Е = ?I??, где ? = 2?n есть угловая скорость.

    Очевидно, что во всех этих случаях есть много моментов, требующих большой точности во всех деталях, но, как правило, на практике достаточно соблюдать очень немногие.


    Ил. 4. В этом случае движение разложено на два отдельных компонента — одно поступательное в окрестности О, а другое вращательное — вокруг С. Совокупная кинетическая энергия массы равна сумме этих двух энергий


    Еще один способ вычисления кинетической энергии представлен на иллюстрации 4. В этом случае величина I выводится на основе момента инерции Ie на другой оси, параллельной О и проходящей через центр тяжести С массы М. В соответствии с этим энергия движения Е = ?MV? + ?Ie?? где V есть скорость центра тяжести.

    Считаю, что всё вышесказанное чрезвычайно важно, так как я замечаю, что корреспонденты, даже те, которые создают впечатление людей, хорошо знакомых с законами механики, не в состоянии провести различие между гипотетическими и физическими истинами, что является существенным фактором в моей аргументации.

    Оценивая кинетическую энергию вращающейся массы любым из показанных способов, мы через посредство соответствующих понятий и методов аппроксимации приходим к выражениям, которые в числовом значении могут быть доведены до любой желаемой степени точности, но не определяют в полном смысле слова подлинное состояние тела. Чтобы внести ясность, развивая идею, заложенную в схеме иллюстрации 1, мы должны обнаружить некую гипотетическую скорость, с которой вся масса должна будет перемещаться, чтобы содержать в себе вышеупомянутую энергию — состояние, абсолютно нереальное и несовместимое с действительностью. Единственно, при условии, что все части тела имеют одну и ту же скорость, лишь произведение ?MV? точно определяет физическую сущность и является в числовом выражении и описательно точным. Еще дальше от очевидной истины уравнение движения, полученное способом, указанным в иллюстрации 4, в котором первое слагаемое представляет кинетическую энергию поступательного движения тела целиком, а второе — кинетическую энергию его осевого вращения. Первое потребовало бы перемещения массы по определенной траектории и в определенном направлении, при этом все части должны иметь одинаковую скорость, второе — его одновременного перемещения по другой траектории и в другом направлении, при этом части должны иметь различные скорости. Эта абстрактная идея углового движения является основным виновником возникновения иллюзии осевого вращения Луны, которую я попытаюсь развеять с помощью дополнительных доказательств.


    Ил. 5. Этот чертеж представляет конструкцию, состоящую из 8 шаров М, помещенных на спицы S и вращающихся вокруг центра О. Шары могут свободно вращаться на стержнях, которые могут быть закреплены. С помощью этой системы можно доказать ложность вывода об осевом вращении Луны


    С этой целью обратим внимание на иллюстрацию 5, представляющую систему, состоящую из восьми шаров М, которые укреплены на спицах радиально исходящих из ступицы H, вращающейся вокруг центральной оси О, предположим, на подшипниках качения. Это устройство подобно представленному выше, за исключением того, что шары не имеют жесткого соединения со спицами, а насажены на винтовые стержни S, которые обычно свободно вращаются, но могут быть закреплены, с тем чтобы позволить и шарам, и осям свободно вращаться и жестко закрепляться, когда это будет необходимо. Для облегчения наблюдения на спицы нанесены радиальные обозначения, а нижняя часть шаров заштрихована. Изначально допустим, что чертеж изображает состояние покоя, при этом шары могут свободно вращаться, не встречая помех в виде трения, и пусть системе будет сообщена угловая скорость ? = 2?n движения по часовой стрелке, как показывает длинная жирная стрелка. Представим себе шар М, при этом его последовательные положения 1, 2, 3–8 в пространстве, а также относительно спицы будут именно такими, какими они изображены на чертеже, тогда анализ этого графика делает очевидным тот факт, что шар, перемещаясь с угловой скоростью ? вокруг О в направлении часовой стрелки, вращается относительно своей оси с той же угловой скоростью, но в противоположном направлении, указанном пунктирной стрелкой. Объединенный результат этих двух движений есть такое поступательное движение шара, что все частицы приводятся в движение с одной и той же скоростью V, которая равна скорости его центра тяжести. В этом случае, при условии, что нет абсолютно никакого трения, кинетическая энергия каждого шара будет определяться произведением ?MV?, и не приблизительно, а с математической точностью. В случае, когда оси плотно закреплены и шары жестко зафиксированы на спицах, такое вращательное движение относительно осей становится физически невозможным, и тогда выясняется, что кинетическая энергия каждого шара возрастает, при этом прирост абсолютно равен энергии вращения шара на своей оси.

    Этот факт, подкрепленный и теоретически, и экспериментально, является основой всеобщей убежденности, что вращающееся тело — в данном варианте шар М, обращая всегда одну и ту же сторону к центру движения, как ни странно, вращается на своей оси в том направлении, которое обозначено короткой сплошной стрелкой. Но вращения не происходит, хотя, на первый взгляд, кажется, что оно есть. Заблуждение выявится в ходе дальнейшего исследования.

    Для начала обратите внимание на то, что, когда масса, скажем, якорь электромотора, вращающийся с угловой скоростью ?, реверсирует, его скорость равна -?, а разность ? — (-?) = 2?. Тогда, если шар зафиксировать на спице, разность угловой скорости составит лишь ?: следовательно, ему должна быть сообщена дополнительная скорость ?, чтобы вызвать вращение шара на собственной оси по часовой стрелке в истинном значении слова. Тогда кинетическая энергия была бы равна сумме энергий поступательного и осевого движений, не просто в абстрактном математическом значении, но в качестве физического явления. Я в полной мере осознаю, что, согласно широко распространенному мнению, если шар не зафиксирован на стержне, он вообще не поворачивается на своей оси, он лишь вращается с угловой скоростью всей конструкции, будучи жестко закрепленным на той же оси, но истина будет очевидна после более детального изучения этого вида движения.

    Пусть система вращается, как было принято и проиллюстрировано вначале, когда шары не закреплены на стержнях, и пусть стержни постепенно закрепляются, вызывая трение, которое медленно уменьшает и, в конце концов, препятствует скольжению. На начальном этапе все части каждого шара перемещались со скоростью центра тяжести, но так как подшипниковое сопротивление всё более и более заявляет о себе, поступательная скорость частиц, находящихся ближе к оси О, будет убывать, в то время как таковая диаметрально противолежащих частиц будет возрастать, пока не будут достигнуты максимальные значения этих изменений, когда шары прочно закреплены. В этом процессе мы, таким образом, отбираем массы у частиц, находящихся ближе к центру движения, и тем самым кинетическую энергию поступательного движения, в то же время добавляем к энергии тех частиц, которые находятся дальше и, очевидно, что прирост окажется бoльшим, чем потеря, так что фактическая скорость каждого шара в целом возрастет. Только за счет этого мы имеем возрастание кинетической энергии системы, а не по причине осевого вращения шаров. Энергия Е каждого из них есть исключительно энергия поступательного движения с фактической скоростью Ve, определенной выше, так что Е = ?MVe?. Осевые вращения шара в любом из двух направлений лишь кажущиеся; они не имеют какой бы то ни было реальной основы и не требуют никакого механического усилия. Только в том случае, когда действует независимая внешняя сила, чтобы вращать ротативное тело на его оси, эта энергия проявит себя.

    В этой связи следует указать, что при истинном осевом вращении неподвижно закрепленной и однородной массы все симметрично расположенные частицы вносят равный вклад в количество движения, что в данном случае не имеет места. Тот факт, что не существует даже малейшей тенденции к такому движению, может быть без труда доказан.


    Ил. 6. Чертеж, представляющий шар с массой М и радиусом r, вращающийся вокруг центра О, служит для теоретического исследования движения Луны


    Для этого я сошлюсь на иллюстрацию 6, где представлен шар М с радиусом r и с центром С, находящимся на расстоянии R от оси О; шар разделен на две равные части тангенциальной плоскостью pp, как показано, при этом нижняя часть сферы заштрихована для распознавания. Кинетическая энергия шара, при условии, что он совершает n оборотов в секунду вокруг О, определяется согласно первому варианту выражения как E = ?MVe? = ?M(2?Rgn)?, где M — масса, a Rg — радиус вращательного движения. Но, как говорилось в пояснении к иллюстрации 4, мы также имеем выражение Е = ?MV? + ?Ie??, где V = 2?Rn есть скорость центра тяжести С, а Ie — момент инерции шара, находящегося в окрестности параллельной оси, проходящей через С и равный 2/5Мi?, так что Е = ?М(2?Rn)? + 1/5Мr?(2?n)?. Ни одно из этих двух выражений для E не характеризует фактическое состояние тела, но первое, конечно, предпочтительнее, так как передает в сущности идею единого движения вместо двух, из которых одно не имеет основы для существования. Я берусь прежде всего доказать, что не существует вращающего момента, или вращательного усилия, вокруг центра С, и что кинетическая энергия воображаемого осевого вращения шара в математическом смысле равна нулю. Это приводит к необходимости считать две половины, разделенные тангенциальной плоскостью pp, полностью независимыми одна от другой. Пусть с1 и с2 будут их центрами тяжести, тогда Сc1 = Сc2 = 3/8r. Чтобы определить кинетическую энергию полусфер, мы должны найти их радиусы движения по окружности, что можно сделать, определив моменты инерции Ic1 и Iс2 в окрестности параллельной оси, проходящей через с1 и с2. Можно избежать сложных вычислений, если помнить, что момент инерции любой из полусфер в окрестности оси, проходящей через С, выражается формулой Ic = ? ? 2/5Mr? = 1/5Mr?, и поскольку М = 2 т, то Ic = 2/5mr?. Это можно выразить через моменты Ic1 и Iс2, а именно: Ic = Iс1m(3/8r)? = Ic2 + m(3/8r)?. Следовательно, Ic1 = Ic2 = Icm(3/8r)? = 2/5mr? — 9/64mr? = 83/320mr?. Следуя этому же правилу, можно найти моменты инерции полусфер в окрестности оси, проходящей через центр движения О.

    Определяя моменты для верхних и нижних половин шара, соответственно, IO1 и IO2, мы получим IO1 = m(R + 3/8r)? + Iс1 = m(R + 3/8r)? + 83/320mr? и IO2m(R3/8r)? + Iс2 = m(R3/8r)? + 83/320mr?

    Таким образом, для верхней половины сферы радиус движения по окружности



    и для нижней половины



    Они представляют собой расстояния от центра О, вокруг которых массы полусфер могут концентрироваться, и тогда алгебраическая сумма их энергий, которые полностью относятся к поступательному движению, а энергии осевого вращения при этом равны нулю, будет равна совокупной кинетической энергии шара в целом. Значение этого факта поможет понять ссылка на иллюстрацию 7, в которой две массы, уплотненные до точек, представлены закрепленными на невесомых нитях длиной Rg1 и Rg2, которые специально показаны смещенными, но их следует представлять совпадающими. Можно без труда увидеть, что если обе нити отрезать, в тот же момент массы отлетят по касательной к своим орбитам, при этом угловое движение станет прямолинейным, и не произойдет никакого трансформирования энергии. Теперь давайте узнаем, что произойдет, если две массы жестко соединить, а связующее звено между ними считать невесомым. В этом случае мы придем к фактическому сбою в обсуждаемом вопросе. Очевидно, что пока происходит турбулентное движение и обе массы имеют абсолютно одну и ту же угловую скорость, связующее звено не будет оказывать какого-либо влияния, вокруг общего центра тяжести масс нет ни малейшего поворотного усилия или тенденции к выравниванию энергии между ними. В тот момент, когда нити оборвутся и шары будут отброшены, они начнут вращаться, но, как указывалось выше, это движение ни прибавит, ни убавит аккумулированной энергии. Однако вращение обусловлено не исключительным свойством углового движения, а тем обстоятельством, что тангенциальные скорости отброшенных масс, или частей тела, различны.


    Ил. 7. Представленные здесь две массы m и m1 уплотнены и рассматриваются в виде точек, закрепленных на очень легких нитях различной длины. Если обе нити обрезать, а массы рассматривать как слившиеся в одну, никакого вращения вокруг общего центра тяжести не произойдет


    Ил. 8. Чтобы понять проблему, представленную на иллюстрации 7, вообразите два ружейных ствола, параллельных один другому. Если одновременно выстрелить двумя шарами, соединенными воображаемым креплением, они будут вращаться вокруг их общего центра тяжести, подтверждая, что Луна обладает только кинетической энергией поступательного движения


    Чтобы разобраться в этом и исследовать полученный эффект, представьте себе два ружейных ствола в иллюстрации 8, размещенных параллельно один другому и с осями, разнесенными на расстояние Rg1 и Rg2. Допустим, что два шара одного диаметра, каждый с массой т, выстреливаются из стволов с начальными скоростями V1 и V2, соответственно равными 2?nRg1 и 2?nRg2 как в случаях, уже рассмотренных. Если далее предположить, что в момент вылета из стволов шары будут жестко соединены невесомой кулисой, они будут вращаться вокруг их общего центра тяжести, и в соответствии с концепцией, изложенной в моей предыдущей статье, будет иметь место соотношение



    где n — число оборотов в секунду. Выравнивание скоростей и кинетических энергий шаров будет происходить в этих условиях очень быстро, но у двух небесных тел, связанных гравитационным притяжением, этот процесс может потребовать века. Итак, это турбулентное движение реально и требует энергии, которая, очевидно, должна быть изначально подана и, следовательно, должна снижать скорость шаров в направлении полета на величину, которую можно без труда вычислить. В момент выстрела совокупная кинетическая энергия составляла Е = ?mV1? + ?mV2?, что, очевидно, будет равно mV3? где V — фактическая скорость общего центра тяжести, из чего следует, что



    Скорость вращения масс, несомненно, составляет V1V2 / 2, а вращательная энергия обоих шаров, которые должны рассматриваться в виде точек, выражается e = m(V1V2 / 2). Тогда кинетическая энергия поступательного движения в рассматриваемом направлении полета будет выражаться как


    где V4 = V1 + V2 / 2 есть скорость общего центра тяжести, так что V3V4 есть потеря скорости в направлении полета вследствие вращения точек, представляющих массы. Если вместо точек мы будем иметь дело с собственно шарами, их вращательная энергия


    где i — момент инерции каждого шара вокруг собственной оси.

    Как видите, мы приходим точно к тем же результатам, независимо от того, будет движение прямолинейным или орбитальным. В обоих случаях совокупная кинетическая энергия может быть разделена на две части одного и того же числового значения, но есть существенное различие. При наличии углового движения осевое вращение является не более чем абстрактной концепцией; в случае же поступательного движения это — несомненное явление.

    Фактически все спутники вращаются подобным образом, и вероятность того, что ускорение или замедление их осевого вращения — при условии, что оно вообще существует — должно привести к остановке по достижении определенной угловой скорости, бесконечно мала, в то же время почти с абсолютной уверенностью можно сказать, что всякое движение такого рода должно в конечном счете прекратиться. Наиболее вероятно, что никакая подлинная Луна никогда не вращалась на своей оси, так как во время ее зарождения должна была происходить некая деформация и смещение ее центра тяжести вследствие действия силы притяжения со стороны материнской планеты, что определяет свойственное ей положение в пространстве относительно последней, в котором она пребывает безотносительно к расстоянию более или менее стабильно. В подтверждение этого допустим, что шар М на иллюстрации 5 изготовлен из неоднородного материала, а также что он опирается лишь на ось, проходящую через его центр тяжести, а не центр формы. Тогда в какой бы позиции шар ни был зафиксирован на стержнях, его кинетическая энергия и центробежная сила будут одинаковы. Тем не менее направляющая тенденция будет иметь место, так как два центра не совпадают и, следовательно, отсутствует динамическое равновесие. Если допустить свободное вращение на оси силы тяжести, тело любой возможной формы будет стремиться занять такую позицию, чтобы линия, соединяющая два центра, указывала на О, и здесь возможны два положения устойчивости, но обычно, если центр тяжести не сильно смещен, более тяжелая часть будет поворачиваться наружу. Такое положение может иметь место на Луне, если она затвердела до того, как удалилась от Земли на большое расстояние, когда систематизация масс в ее внутреннем пространстве вступила в зависимость от ее собственных гравитационных сил, безмерно более мощных, чем земные. Высказывалось предположение о яйцевидной или эллипсоидальной форме планеты, но такое отклонение от сферической формы должно быть ничтожным. Она может даже иметь идеальную сферическую форму с совпадающими центрами тяжести и симметрии, но при этом действительно вращаться. Каким бы ни было ее происхождение, дело в том, что в данное время все ее части имеют одну и ту же угловую скорость, как если бы она имела жесткое соединение с Землей. Это состояние должно сохраняться вечно, пока силы вне системы Луна — Земля не начнут действовать и не послужат причиной возникновения иных условий и, таким образом, надежда астрономов на то, что ее другая сторона может когда-либо стать видимой, должна быть отложена на неограниченно долгое время.

    Движение такого рода, как я продемонстрировал, исключает возможность осевого вращения. Легче всего освободиться от этой иллюзии, если представить себе спутник разделенным на мельчайшие и совершенно независимые части, подобные пылинкам, которые имеют различные орбитальные, но строго одинаковые угловые скорости. Сразу же будет ясно, что кинетическая энергия такого скопления носит исключительно поступательный характер и нет абсолютно никакой тенденции к осевому вращению. Это также в полной мере разъясняет, почему Луна, при условии, что ее отстояние не возрастает в значительной мере, должна всегда обращать к нам одну и ту же сторону, не имея какого-либо собственного направляющего свойства, а также и без малейшего усилия со стороны Земли.

    Что касается либраций по долготе, я не считаю, что они имеют какое-либо отношение к этому вопросу. В научных трудах по астрономии осевое вращение Луны принимается как физический факт, и считается, что ее угловая скорость есть постоянная величина, в то же время угловая скорость орбитального движения таковой не является, результатом чего будет видимая осцилляция, открывающая нашему взору большую поверхность. В какой-то мере это может быть верно, но мое мнение таково: одно лишь изменение орбитальной скорости, что должно быть очевидным из вышесказанного, не могло бы вызвать такой феномен, поскольку, каким бы ни было круговое движение — быстрым или медленным, положение тела относительно центра притяжения остается одним и тем же. Истинная причина этих осевых смещений лежит в изменении расстояния Луны от Земли, вследствие чего тангенциальные составляющие скорости ее частей различны. В апогее, когда планета снижается, радиальная компонента скорости уменьшается, в то время как тангенциальная возрастает, но, поскольку степень убывания первой одна и та же для всех частей, это более определенно выражается в областях, обращенных к Земле; следствием этого будет осевое перемещение, открывающее восточную сторону в большей степени. В перигее, напротив, радиальная компонента возрастает, и эффект будет как раз обратным, в результате чего будет видно больше поверхности с западной стороны. Фактически Луна раскачивается на оси, проходя через свой центр тяжести, на котором она удерживается подобно шару на нити. Силы, вовлеченные в эти маятниковые движения, несравнимо слабее тех, которые необходимы, чтобы вызвать изменения в орбитальной скорости. Если мы приблизительно оценим радиус кругового движения спутника в 600 миль, а его среднее расстояние от Земли в 240 000 миль, то энергия, необходимая для одного оборота в месяц, составила бы только (600/240 000)? = 1/160 000 кинетической энергии орбитального движения.

    «Electrical Experimenter», июнь, 1919 г.

    56

    Сигналы к Марсу в надежде, что на планете есть жизнь

    Мысль о том, что другие планеты населены разумными существами, зародилась, вероятно, на заре цивилизации. Сама по себе она вряд ли представляла бы интерес, поскольку многие древние поверья основаны на суеверных представлениях и бесплодных попытках объяснить необычные явления, а потому были не более чем продуктом неподготовленного и терзаемого страхами воображения. Но если убежденность продолжает жить в сознании на протяжении веков и обретает всё большую силу по мере накопления знаний и интеллектуального роста, можно с уверенностью сделать вывод, что под инстинктивным восприятием есть серьезное основание. Жизнь индивидуума коротка и полна ошибок, человечество же в общем бессмертно и непогрешимо. [Так что] даже несомненные свидетельства разума и научные выводы следует принимать с осторожностью, если они направлены против всего рода человеческого и опыта веков.

    Современные научные исследования обнаружили факт существования других миров, находящихся почти в таких же условиях, как и наш, и наличие органической жизни там, где есть тепло, свет и влага. Теперь мы знаем, что такие условия существуют на бесчисленных небесных телах. Два из них обращают на себя внимание в Солнечной системе — Венера и Марс. Первая во многих отношениях похожа на Землю и, без сомнения, должна быть обиталищем какой-либо формы жизни, но относительно этого мы можем лишь строить догадки, так как ее поверхность скрыта от наших глаз за плотной атмосферой. Вторую планету можно наблюдать без труда, а ее периодические изменения, которые досконально изучены ныне покойным Персивалем Лоуэллом, являются веским аргументом в поддержку гипотезы, что она населена мыслящими существами, безмерно превосходящими нас в овладении силами природы.

    Если дело обстоит таким образом, то всё, что мы можем достичь на нашей планете, пустяк по сравнению с совершенными средствами, ведущими нас к овладению секретами, которые они, должно быть, открыли в ходе борьбы с беспощадными стихиями. Какая была бы трагедия, доведись нам когда-либо обнаружить, что этот замечательный народ постигла неминуемая гибель и что вся драгоценная информация, которая у них была и которую они, возможно, пытались передать нам, утрачена.

    Но несмотря на то, что научные исследования за последние десятилетия укрепили передаваемую из поколения в поколение веру, никакой серьезной попытки установить связь до недавнего времени не могло быть предпринято за неимением соответствующих средств.

    Идея использования световых лучей

    Применение световых лучей для этой цели предполагалось уже давно, и ряд ученых мужей разработали специальные проекты, которые время от времени обсуждались в периодических изданиях. Но внимательное изучение убеждает, что ни один из них осуществлен быть не может, даже если допустить, что межпланетное пространство заполнено не грубой материей, а сплошь однородной и непостижимо тонкой средой, называемой эфиром. Однако хвосты комет и другие явления опровергают эту возможность, так что успешный обмен сигналами через такую среду весьма маловероятен.

    Несмотря на то что мы можем отчетливо видеть поверхность Марса, из этого не следует, что существует обратный процесс. В условиях абсолютного вакуума параллельный луч света мог быть идеально подходящим средством для передачи энергии в любом количестве, так как, теоретически, он мог бы преодолевать бесконечно большое расстояние без какого бы то ни было снижения интенсивности. К сожалению, в процессе прохождения через атмосферу происходит быстрое ее поглощение, так же, как и других форм лучистой энергии.

    Считается реальным предположение, что на Земле можно создать достаточно мощную магнетическую силу для преодоления расстояния 50 000 000 миль, и ведь планируют проложить кабель вокруг земного шара с целью намагничивания последнего. Но достоверные электрические измерения, которые я произвел, изучая земные возмущения, убедительно доказывают, что в Земле не может быть много железа или других магнитоактивных веществ, кроме незначительного количества в земной коре. Все данные говорят о том, что земной шар в сущности подобен стеклянному шару, и потребовалось бы много возбуждающих витков, чтобы вызвать эффект на большое расстояние. Более того, предприятие такого рода окажется дорогостоящим, и, вследствие небольшой скорости тока по кабелю, передача сигнала происходила бы чрезвычайно медленно.

    Чудо свершилось

    Так обстояли дела до тех пор, пока двадцать лет тому назад не был найден способ совершить это чудо. Он не требует ничего большего, чем знаний и мастерства в электротехнике, и, хотя с трудом, но осуществим.

    В 1899 году я приступил к разработке мощного беспроводного передатчика и к выяснению способа распространения волн через Землю. Это имеет первостепенное значение для применения моего метода в промышленных масштабах, и после тщательного изучения я остановил свой выбор на высоком плато в Колорадо (6 000 футов над уровнем моря), где в начале того же года смонтировал установку. Технические трудности преодолевались много успешнее, чем я ожидал, и через несколько месяцев я получил возможность производить электрические воздействия, сравнимые с молнией, а в некотором отношении и превосходящие ее. Без труда получая энергию 18 000 000 лошадиных сил, я постоянно вычислял интенсивность воздействий в отдаленных местностях. В то время, когда я экспериментировал здесь, Марс находился на сравнительно небольшом расстоянии от нас, и в сухой и разреженной атмосфере этой местности Венера представала такой большой и яркой, что ее можно было ошибочно принять за один из военных сигнальных огней. Научные наблюдения за планетой натолкнули меня на мысль просчитать энергию, передаваемую мощным генератором колебаний на расстояние 50 000 000 миль, и я пришел к заключению, что ее достаточно для того, чтобы оказать значительное воздействие на чувствительный приемник, усовершенствованием которого мне в то время довелось заниматься.

    Мои первые сообщения по радио, сделанные с этой целью, оказались восприняты с недоверием только потому, что не были известны потенциальные возможности изобретенного мной прибора. На следующий год я, тем не менее, сконструировал машину с максимальной мощностью 1 000 000 000 лошадиных сил, которая частично построена в Лонг-Айленде в 1902 году и могла начать работать, если бы не то обстоятельство, что мой проект намного опередил время.

    В этот период появились сообщения, что моя башня предназначалась для передачи сигналов на Марс, чего на самом деле не было, но я, действительно, предусматривал сделать ее пригодной для экспериментов в этом направлении. За последние несколько лет мой беспроводной передатчик нашел такое широкое применение, что эксперты стали достаточно хорошо разбираться в его возможностях, и, если не ошибаюсь, теперь осталось очень мало таких людей, кого можно назвать Фомой неверующим. Но наше умение передавать сигнал сквозь бездну пространства, отделяющую нас от ближайших к нам планет, может оказаться бесполезным, если они безжизненны и пусты или населены неразвитыми существами. Наша надежда, что ситуация может быть иной, зиждется на том, что обнаружил телескоп, но не только на этом.

    Найдены неисчерпаемые запасы энергии

    В Колорадо в ходе исследований земных электрических возмущений я применил приемник, чувствительность которого практически неограниченна. В основном считается, что так называемый аудион превосходит в этом отношении все другие, и сэру Оливеру Лоджу приписываются слова о том, что это приемное устройство является средством успешного осуществления радиотелефонной связи и преобразования атомной энергии. Если эта новость соответствует действительности, то ученый, должно быть, стал жертвой неких привидений-шутников, с которыми он общается. Не существует, конечно, никакой конверсии атомной энергии в колбе такого рода, но известны многие аппараты, которые могут с успехом применяться с этой целью.

    Мои устройства дали возможность сделать ряд открытий, некоторые из них уже опубликованы в технических периодических изданиях. Условия работы были весьма благоприятными, так как никакой другой радиостанции значительной мощности здесь не имелось, и наблюдаемые мной эффекты были, соответственно, обусловлены естественными факторами — земными или космическими. Постепенно я научился распознавать и устранять в приемнике определенные помехи, и в один из таких моментов мое ухо уловило едва различимые сигналы, приходившие с регулярной последовательностью, они не могли исходить от земного источника, но, возможно, были вызваны какой-либо солнечной или лунной активностью или воздействием Венеры, и вдруг меня осенило, что они могли, вероятно, приходить с Марса. В последующие годы я очень сожалел, что перегруженность работой заставила меня отступить перед грандиозностью идеи и не позволила сконцентрировать свои усилия на исследованиях в этом направлении.

    Теперь пришло время заняться систематическим изучением проблемы, находящейся за пределами понимания; доведение этой научной работы до конца может означать несказанные блага для человечества. Нужны щедрые капиталовложения, следует сформировать корпус компетентных экспертов для анализа всех предложенных планов и содействия осуществлению лучшего из них. Одно лишь инициирование такого проекта в эти нестабильные революционные времена могло бы принести благо, которое нельзя недооценить. В своих первых предложениях я основывался на применении фундаментальных математических законов для постижения первых элементарных истин. Однако вскоре я стал думать над проектом, сходным с передачей изображения, благодаря которому можно будет получить информацию о форме и тогда почти полностью будут устранены барьеры, препятствующие взаимному обмену идеями.

    Вероятность успеха в испытаниях

    Никаким иным способом невозможно добиться полного успеха, так как мы имеем понятие только о том, что мы можем мысленно представить. Без постижения формы нет точного знания. Уже изобретено большое количество разного рода устройств для передачи изображений с помощью проводов, с ними можно также успешно работать, применяя беспроводной метод. Некоторые приборы имеют простую, примитивную конструкцию. Их действие основано на применении идентичных узлов, которые действуют синхронно и передают, таким образом, сколь угодно сложную информацию. Не требовалось сверхнапряжения ума, чтобы прийти к этому решению и создать приборы, основанные на этих или подобных принципах и, проводя серии опытов, постепенно достичь полного взаимопонимания.

    В газете «Herald» за 24 сентября дано официальное сообщение, что профессор Дейвид Тодд из колледжа Амхерст намеревается осуществить попытку общения с обитателями Марса. Замысел состоит в том, чтобы подняться в аэростате на высоту около 50 000 футов с явным намерением преодолеть препятствие в виде плотного атмосферного слоя. Я не собираюсь высказывать критические замечания по поводу этого предприятия, кроме предупреждения, что применение такого способа не даст никакой существенной выгоды, так как все преимущества высоты тысячекратно уменьшатся невозможностью применения мощных высококлассных передающих и принимающих устройств. Физические трудности и риск, противостоящие навигатору на огромной высоте, очень велики, и возможность выжить в таких условиях вызывает сомнение. Совершая свои рекордные по высоте полеты, Рёльфс и Шрёдер обнаружили, что на высоте примерно шесть миль все их силы были практически на исходе. Фатальный конец не заставил бы себя долго ждать. Если профессор Тодд желает бросить вызов этим опасностям, он должен будет подумать о специальных средствах защиты, а они создадут помехи в его исследованиях. Однако более вероятно, что он лишь выражает желание взглянуть на планету через телескоп в надежде рассмотреть что-то новое. Но никоим образом не бесспорно, что этот прибор окажется эффективным в таких условиях.

    «New York Herald», 12 октября 1919 г.

    57

    Разработки в области практического осуществления и режима работы в телефотографировании

    Как и следовало ожидать, последние успешные опыты Эдуарда Белена в Париже по фотографической передаче изображения между Нью-Йорком и Сент-Луисом (расстояние 1 000 миль) вызвали новую волну интереса к этому довольно давно известному направлению в науке. Аппарат г-на Белена рассматривается с точки зрения опыта предыдущих попыток в этой области, и следует признать, что французский изобретатель добился значительного прогресса. Его аппарат, действительно, по многим техническим характеристикам устарел и всем хорошо знаком, но все детали просчитаны квалифицированно, а его фотографические репродукции не только хорошо передают сходство с оригиналом, но и отличаются в немалой степени четкостью. Подобно другим научным направлениям, передача изображения на расстояние доведена до современного уровня совершенства путем последовательных и постепенных улучшений, проводившихся в течение 77 лет. Литература по этому вопросу поистине многотомна, и изучить ее досконально трудно, поскольку статьи опубликованы на разных языках и разбросаны по многочисленным периодическим изданиям. Лишь одна исчерпывающая работа была полностью опубликована в Германии д-ром Артуром Корном из Мюнхена и д-ром Бруно Глатцелем.

    Первые патенты, полученные много лет назад

    Своим возникновением эта идея обязана Александру Бейну, шотландскому конструктору, который получил патент, предъявив свое изобретение в 1843 году. Его замысел предполагал передачу печатных материалов, чертежей и картин следующим образом: на передающей станции был смонтирован штатив с изолированными металлическими иглами таким образом, чтобы скользить по строчкам над рамкой, лежащей над печатной страницей, которую необходимо воспроизвести на расстоянии. Внутри этой рамки и под прямым углом к ее плоскости в герметизирующую пасту вставляются короткие провода, при этом их нижние концы контактируют с буквами, которые, в свою очередь, все электрически присоединены. По мере того как штатив совершал возвратно-поступательное движение, изолированные металлические иглы то соприкасались с верхними концами коротких проводов, то размыкали контакт с ними, регулируя таким образом подачу тока через них. Каждая металлическая игла соединялась специальной передающей линией с принимающей станцией, где находился аналогичный штатив, способный скользить по химически обработанной бумаге, наложенной на заземленную металлическую пластину. Когда аккумулятор на выходе передающей станции соединялся одним из своих полюсов с буквами, а другим с землей, импульсы тока, проходя по передающим проводам и химически обработанной бумаге, вызывали изменение цвета последней, воспроизводя тем самым символы. Чтобы получить удовлетворительные изображения, требовалось огромное количество игл и передающих проводов, и, понимая этот недостаток, Бейн предложил использовать только один провод, но не дал полной информации относительно этого. Впоследствии Боннелли и другие изобретатели усовершенствовали его аппарат, оставив лишь небольшое количество проводов. Нет сомнений, что вопреки явной непродуманности системы, она была вполне приемлемой для промышленной эксплуатации в передаче печатных материалов, в том числе чертежей и картин.

    Первого настоящего успеха добился англичанин Фредерик Кoллир Бейкуэлл, который получил Британский патент в 1847 году за технологическую разработку, некоторые качества которой оказались востребованными в последующие годы. В качестве передатчика он применил валик, на котором чернилами из изолирующего вещества были написаны печатные знаки. Металлическая игла касалась валика и слегка выдвигалась при каждом его обороте в точности как у более старой модели фонографа. Подобный валик, покрытый химически обработанной бумагой и оснащенный скользящей иглой, установили на принимающей станции. При этом валики были заземлены, и аккумуляторная батарея подсоединена к линейному проводу, соединяющему передающие и принимающие иглы, в результате прохождения тока происходило изменение цвета бумаги и проявление письменных знаков на принимающем конце. Принимая во внимание то время, аппарат Бейкуэлла был поразительно совершенным, особенное его отличие — способность поддерживать синхронность вращения валиков, для чего предусмотрена автоматическая и ручная коррекция. Между Бейкуэллом и Бейном возник конфликт за право первенства, но в данном случае он не имел смысла — Бейн был инициатором идеи, в то время как Бейкуэлл стал первым в ее успешном претворении.

    Вывод о нецелесообразности применения химической бумаги

    Применение химической бумаги вызывало возражения, и в 1851 году Хипп исключил ее, производя отпечатки на приемнике с помощью магнита, возбуждаемого передаваемыми импульсами. Любопытно тем не менее отметить, что современный способ полностью основан именно на этом приеме. В 1855 году Касселли модифицировал аппарат Бейкуэлла, применив точно синхронизированные маятники на передающей и принимающей станциях, заменяя, таким образом, вращательное движение возвратно-поступательным, как в устройстве Бейна. Касселли, по-видимому, был более предприимчивым, чем его предшественники, и аппарат, который он построил в 1860 году, действительно применялся довольно успешно недолгое время для осуществления связи между Парижем и некоторыми городами Франции. Его сняли с эксплуатации, вероятно, по причине замедленности передачи и отсутствия спроса на такого рода аппаратуру. Странно, что многие монографии по физике и другие учебники упоминают Касселли, игнорируя в то же время Бейна и Бейкуэлла.

    Некоторое время спустя Майер смонтировал устройство, которое успешно применялось во Франции и которое можно по праву считать первым, вполне практическим воплощением проектов в этой области. Любопытное усовершенствование было внесено Жераром, который в 1865 году предложил использовать плоские диски вместо валиков Бейкуэлла. С тех пор как предприняли попытку передачи сигнала с помощью одного провода, появилась настоятельная необходимость поддержки идеальной синхронности между передатчиком и приемником, и многие изобретатели отдали свои силы решению этой задачи. Д'Арлинкорт прибегнул к камертонам, и его идея была впоследствии осуществлена в более совершенном виде Лакуром. Примерно в это время изобретение дошло до Америки, и в 1870 году Сойер сосредоточил всю свою изобретательность на разработке способа, в котором он применил цинковые клише. Они служили очень надежно и явились огромным шагом вперед.

    В 1880 году Эдисон изобрел аппарат, принцип работы которого был тот же, что использовал и Сойер, отличие заключалось в том, что отпечатки производились на бумаге рельефно. Далее эту идею развил Деннисон в измерительных приборах поршневого типа. Благодаря введению установки переменного тока передачи энергии Теслы, появилось оригинальное средство для управления передатчиками и приемниками. В 1893 году Шихи первым предложил использовать синхронные двигатели.

    Новые разработки дают возможность применять фотографические плёнки

    Сделать доступной передачу изображений любого вида — печатных материалов, чертежей или схем — удалось Лену ару, который ввел в процесс фотографические пленки. Но реального успеха добился американский инженер Н. Амштутц, который впервые и вполне успешно применил рельефные фотографические передающие клише. Амштутц был настоящим первопроходцем, а его изобретение явилось сутью современных процессов. Правда, еще в 1865 году француз Хьюберт предложил использовать густую пасту для написания букв, но это не принесло большой пользы. Вполне удовлетворительные демонстрационные опыты с устройствами Амштутца были проведены в Америке более 20 лет тому назад, когда изображения передавались по телеграфным проводам на большие расстояния. Сохранились полученные им пробные отпечатки, которые, безусловно, говорят о том, насколько он опередил свое время.

    Вслед за Амштутцем более или менее успешно занимались передачей изображения Данлейни, Палмер, Миллз и другие американские изобретатели. В это время возникла необходимость в ускорении процесса путем модернизации аппаратов, а также благодаря применению многоканальной передачи. Бельгийский изобретатель Карбонел сделал существенный вклад в решение этой задачи, предложив использовать телефонную мембрану с пишущим элементом для воспроизведения отпечатков.

    Впрочем, среди всех изобретателей д-р Корн был наиболее успешным, а также и плодовитым по количеству предложенных усовершенствований: его фотографический метод записи изображения, осуществленный в 1903 году, был самым значительным достижением. Общую идею фотографической записи выдвинул еще Джордж Литтл, а несколькими годами позже Диллон получил патент на использование светочувствительной бумаги и зеркала, отражающего луч света на нее. Но в то время его предложение было вряд ли осуществимым, так как техника фотографирования оставляла желать много лучшего. В качестве иллюстрации можно напомнить, что в 1892 году внимание ученого мира было приковано к поразительно чувствительному приемнику, который состоял из вакуумной трубки, через которую в точно сбалансированном режиме проходил поток электронов, посредством которого предлагалось использовать метод фотографирования в передаче телеграфных и телефонных сообщений по трансатлантическим кабелям, а позже и беспроводным способом. Это предложение столкнулось с категорическими возражениями против фотографического метода. Действительно, способ Белена стал возможным в значительной степени благодаря значительному улучшению качества светочувствительных пленок, достигнутому в ответ на актуальные потребности кинематографии, а также под влиянием недавней войны.

    Селеновый фотоэлемент и вакуумная трубка применительно к передаче и приёму

    В изобретенном д-ром Корном аппарате селеновый фотоэлемент на передатчике применяется для регулирования интенсивности тока, подающего сигнал, а на принимающей станции он использует вакуумную трубку повышенной интенсивности, которая направляет излучение сквозь узкую щель на светочувствительную пластину. Трубка возбуждается под действием высокочастотных токов, поступающих от трансформатора Теслы, и может производить много тысяч вспышек в секунду. Действие принимающего устройства осуществляется при помощи подключенного гальванометра, вибрографа или телефонной мембраны. Установка Корна с успехом применялась в течение нескольких последних лет в Германии и других странах. Некоторое время она действовала даже в беспроводном режиме. Патенты на этот способ передачи были выданы в 1898 и 1899 годах Кюстеру и Дж. Уильямсу, но эксплуатация этих устройств предполагала применение герцовых волн, и это делало их малопригодными к использованию. Позднее Фредерик Браун, Панса и Кнудсен добились получения патентов [на свои установки], которые, впрочем, имели те же недостатки. На сегодняшний день успеха в этом направлении добились только Корн, Бержонно и Т. Бейкер. Изобретатели неизменно применяют проводной гальванометр, который наиболее подходит для большой скорости [передачи сигнала]. Телеавтографическая передача с применением аналогичных средств проводного, а также беспроводного способа стала сейчас общепринятой и осуществляется при помощи двухкомпонентного передатчика, первоначальная идея которого принадлежит англичанину Джонсу, предложившему эту схему еще в 1855 году.

    Многие современные разработки основаны на хорошо известных принципах

    В этот краткий рассказ о передаче изображения Белин вписал последнюю главу. Способ, на котором он в конце концов остановился после многолетних упорных поисков, предполагает использование двух синхронно вращающихся валиков — одного для передачи и второго для воспроизведения. Первый изготовлен из меди, и его поверхность предварительно обработана и покрыта тонким слоем щелочного раствора, что позволяет наматывать на него пигментным оттиском фотографию и погружать его целиком в горячую воду, что приводит к налипанию желатина на поверхность цилиндра пропорционально степени непрозрачности так, чтобы получалась рельефная фотография отпечатка. На этом валике находится считывающий элемент микрофонной мембраны, который медленно перемещается вперед по мере вращения валика, как это происходит в фонографе. Таким образом ЭДС угольных контактов изменяется в соответствии с изменениями поверхности, а микрофонные токи передаются по проводу к принимающей станции, где они вызывают соответствующие отклонения зеркала, которое является частью высокочувствительного апериодического вибратора. Мощный луч света, отраженный от зеркала, проходит сквозь экран, градуированный от полной прозрачности до непроницаемости, и попадает через микроскопическое отверстие на светочувствительную пленку, намотанную на принимающий валик. Предусмотрены специальные меры, поддерживающие валики в точном соответствии, так как это является обязательным условием надежной работы. Пленка, безусловно, защищена от попадания на нее света извне, и когда процесс завершается, она проявляется как обычная пленка, так что можно получить или позитивную копию, или негатив в зависимости от положения экрана. В его аппарате нет ничего фундаментально нового, фактически каждая возможность этого аппарата была известна из прежних разработок. Даже градуированный экран, один из самых существенных компонентов, уже применялся ранее д-ром Корном. Но г-н Белин проявил изрядную изобретательность и мастерство во всех элементах конструкции, и воспроизведенные им фотографии в высшей степени превосходны. Есть все основания считать, что его усилия будут вознаграждены широким применением на практике этих аппаратов.

    Телевидение должно стать следующим шагом в развитии передачи сигнала

    Передача фотографий является лишь первым шагом на пути к неизмеримо более значительному достижению — телевидению. Под этим подразумевается мгновенная передача зрительных образов на любое расстояние проводным или беспроводным способом. Этому вопросу я посвятил более 25 лет тщательных исследований. Два препятствия, которые в прежние времена казались непреодолимыми, успешно устранены, но на пути всё еще остаются серьезные трудности. Они проявляются в инертности светочувствительных элементов и в недостаточно высокой скорости, которая необходима для обеспечения зрительного восприятия людей, предметов или бытовых сцен. Задача состоит в том, чтобы создать передатчик, аналогичный хрусталику и сетчатки глаза, передающее средство, подобное зрительному нерву, и приемник, структурированный таким же образом, как мозг. Это колоссальная задача, но я уверен, что в ближайшем будущем человечество увидит ее практическое решение.

    «Electrical Review», 11 декабря 1920 г.

    58

    Как разрушать смерчи

    Множеству невероятных природных явлений — стоячим воздушным волнам, циклонам и особенно смерчам — некоторые специалисты пытаются найти объяснение, исходя из предположения о скоростях порядка тех, которые имеют место при взрывах.

    Чтобы внести ясность, допустим, что один фунт динамита, заполняющий весь объем снаряда, воспламенился. Максимальная расчетная скорость (см. примечание А с вычислениями в конце статьи), достигаемая в предполагаемом выходном отверстии, составляет 11 400 футов в секунду, что, очевидно, намного превышает скорость на входе. Однако при таком взрыве газы выбрасываются через полусферическое отверстие большой площади с соответственно меньшей скоростью, которая затем снижается в процессе сообщения ускорения атмосферному воздуху. Таким образом, на небольшом расстоянии от центра взрыва стоячая волна идет впереди со скоростью звука, то есть 1 089 футов в секунду.


    Никола Тесла


    Я имел много возможностей проверить эту величину, исследуя взрывы и разряды молний. Идеальный случай такого рода представился в Колорадо-Спрингс в июле 1899 года, когда я проводил испытания своей радиовещательной станции (единственной беспроводной станции, существовавшей в то время). Тяжелая туча нависла над горной грядой Пайкс-Пик, вдруг на расстоянии всего десяти километров в вершину горы ударила молния. Я тут же засек время вспышки и, сделав быстрый подсчет, сообщил своим ассистентам, что стоячая волна дойдет через 48? секунды. Именно через такой промежуток времени страшной силы удар потряс здание; не будь оно прочно укреплено, его снесло бы с фундамента. Все окна и дверь на стороне, попавшей под удар, были разбиты, сильно пострадали внутренние помещения. Сравнивая энергию электрического разряда и его длительность, а также энергию взрыва, я приблизительно подсчитал, что удар был, по-видимому, эквивалентен взрыву двенадцати тонн динамита. Хотя механические воздействия разрядов молнии уменьшаются пропорционально квадрату расстояния, их, тем не менее, можно отчетливо прослеживать в радиусе шестисот миль.


    Давнишняя идея расстреливания смерчей на воде была в принципе верной, но не соответствующей по силе [применяемых средств]. Да, согласно приводимым здесь расчетам, силу смерча можно преодолеть с помощью современных взрывчатых веществ, которые можно было бы эффективно и без риска применять указанными способами


    Следует помнить, что эти действия происходят за очень короткое время и что постоянный ветер, имей он такую скорость, несомненно, произвел бы страшные разрушения. Он мгновенно выветрил бы и измельчил самые твердые вещества, силой трения и удара расплавил бы металлы и сжег бы всё, что может гореть. Предметы, какими бы большими и тяжелыми они ни были, оказались бы подхваченными и унесенными, словно перышки, и даже горная гряда не смогла бы противостоять ветру какое-либо значительное время, так как давление на поверхность, перпендикулярную направлению потока сжатого воздуха, составило бы около трех тысяч фунтов на квадратный фут. Обитатели нашей планеты, несомненно, имеют все основания поздравить себя с тем, что такие ураганы невозможны, но и те смерчи, что происходят в настоящее время, достаточно вредоносны.

    Дело в том, что относительно невысокая скорость ветра вполне способна произвести означенные действия, хотя они, на первый взгляд, и могут вызывать изумление и приводить в замешательство. В качестве примера рассмотрим механический эффект, который может произойти, если стебель высохшей травинки или соломинку с силой метнуть перпендикулярно в деревянную планку со скоростью лишь 150 футов в секунду (см. примечание В). Сила 2 929,5 фунта на квадратный дюйм намного превышает порог прочности планки, при этом компрессионное сопротивление дубовой доски, перпендикулярное структуре дерева, составляет менее половины этой величины. Отсюда очевидно, что эффект такого рода можно с уверенностью ожидать при гораздо меньшей скорости, особенно если стебель заострен.

    В этой связи представляет интерес классический эксперимент, который обычно демонстрировали студентам в некоторых европейских учебных заведениях. Он заключался в том, что из ружья выстреливали сальной или стеариновой свечой в доску толщиной 0,4 дюйма. К изумлению зрителей мягкий снаряд не только проходил сквозь древесину, но и не производил впечатления неподходящего предмета для выстрела. Секрет успеха объяснялся скоростью прохождения, не оставляющей свече времени для изгиба. Вывод очевиден: воздействие урагана всегда чревато опасностью для жизни, так как куски летящих предметов, не исключая и фрагментов соломы, могут глубоко проникать в тело. Если моя память служит мне исправно, я читал о серьезных травмах такого рода. Но самые высокие скорости воздушных потоков, наблюдаемых в ураганах, сами по себе недостаточны, чтобы объяснить некоторые потрясающие трюки в исполнении ветра, например, поднимание в воздух груженых вагонов и локомотивов и отбрасывание их на большое расстояние. Когда я много лет тому назад впервые прочитал такие сообщения, они позабавили меня, так как я принял их за очередную американскую газетную утку, какие часто преподносятся простодушным иностранцам. Когда же, к своему несказанному изумлению, обнаружил, что они достоверны, я снова и снова пытался объяснить их с точки зрения теории и подтвердить расчетами, но лишь недавно решил эту давнишнюю загадку.


    Вверху показано, как формируется смерч; он вращается так же, как сточные воды и верхняя часть [водной воронки]. Огромная скорость вращения дает смерчу возможность совершать многие из описанных аномальных действий, например, когда мягкая свеча, не повреждаясь, простреливает твердую доску


    Вихревые движения атмосферы известны и наводят ужас с незапамятных времен, но кроме отчетов об их разрушительных действиях, большей частью сомнительных, нет почти никакой точной информации. В 1862 году Г.-В. Дове опубликовал работу под названием «Закон урагана», рассматривая в ней, главным образом, циклоны, которые часто охватывают значительные территории земного шара и перемещаются на тысячи миль, пока не растратят свою энергию. Их изучение не составляет большого труда, и связанные с ними основные факты теперь общеизвестны. Не таковы несравнимо более опасные локализованные ураганы, истинные смерчи, внезапные, блуждающие, скоротечные, чрезвычайно опасные и трудные для исследований.

    В последние годы Бюро погоды и Смитсоновское общество Соединённых Штатов дают заслуживающую доверия информацию в связи с этой проблемой, тем не менее наши познания о смерчах всё еще фрагментарны. Не придавая особого значения газетным описаниям событий, которые бывают не вполне достоверными, и опираясь на проверенные факты, я пришел к определенным выводам относительно этих явлений, которые можно суммировать следующим образом:

    1. Максимальная скорость воздуха, образующего воронку, вероятно, никогда не превысит, скажем, 235 футов в секунду, или около 160 миль в час, что, полагаю, вполне достаточно, чтобы объяснить все наблюдаемые явления. В своем «Руководстве по метеорологии», исчерпывающем труде, недавно опубликованном, сэр Уильям Напьер Шоу утверждает, что возможны скорости 300 миль в час, или 440 футов в секунду, и даже более, но в действительности это маловероятно. Следует помнить, что воздушный поток, имеющий скорость 150 футов в секунду, без труда уносит кирпичи и другие такие же тяжелые предметы.

    2. Вопреки распространенному представлению, приписывающему смерчу огромную энергию, он имеет немало характерных особенностей взрыва. Его мощность велика вследствие концентрации и быстроты действия, но энергия удивительно невелика. Итак, чтобы получить приблизительное соответствие, рассмотрим вихрь с наружным диаметром 1 200 футов в верхней части, примерно с такой же высотой и диаметром 300 футов в основании (см. примечание С). Для получения такой же энергии потребовалось бы 1,24 тонны бензина, или 5,74 тонны динамита. Следует, однако, заметить, что эта оценка значительно завышена, так как воронка не заполнена целиком воздухом одинаковой плотности, и не вся она вращается с максимальной скоростью.

    3. Вихревое движение смерча — своего рода огромный насос, втягивающий воздух через отверстие в верхней части и выпускающий его в противоположном конце с постоянной скоростью, одновременно вызывая разрежение во внутренней части. В этом отношении его действие может быть уподоблено работе многоступенчатого вакуумного насоса, ибо когда воздух устремляется из верхней части к основанию, всё больше и больше его увлекается к периферии окружности, увеличивая постепенно вакуум, который может таким образом достигать верхних значений вблизи земли. Этим объясняется последовательное сжатие вихря. Какова степень фактически достигаемого разрежения внутри этого чудовищного изобретения природы, можно примерно представить, если принять во внимание, что в каждом горизонтальном сечении воронки центробежная сила воздуха уравновешивается противоположно направленным дифференциальным давлением снаружи и изнутри вихря. При равенстве прочих показателей центробежная сила обратно пропорциональна радиусу круговращательного движения (среднее расстояние массы от центра), следовательно, сжатие воронки — это хотя бы какое-то приблизительное мерило разрежения.

    К примеру, если диаметр вблизи земли составляет одну четвертую диаметра у вершины, то можно с уверенностью сделать вывод, что разрежение в нижней части должно примерно в четыре раза превышать оное в верхней зоне, где не происходит существенного сжатия.

    Поскольку измеренная разность давлений в насосах несколько больше, чем вычисленная по формуле (примечание D), то вполне допустимо предположить, что в рассматриваемом случае разрежение может составлять не менее четырех дюймов.

    4. Как правило, бoльшая часть механических воздействий смерча в значительной степени усиливается участием воды, пыли, песка и других предметов, несомых воздушным потоком. Хотя процентное содержание этих веществ в общем объеме может быть очень небольшим, они в сотни тысяч раз тяжелее воздуха и могут в огромной степени увеличить количество движения и усилить мощь удара.

    5. Поступательное движение воронки, как обычно считают, происходит скорее наперерез, а не в направлении ветра. Это объясняется ее быстрым вращением, которое является причиной так называемого эффекта Бернулли, или Магнуса, только гораздо более интенсивного. Сила, толкающая ее наперерез ветру, может многократно превышать другую, побуждающую ее перемещаться по ветру. Вихрь движется от зоны более высокого статического давления, где вращение происходит против ветра, и вихрь наклоняется в сторону, куда дует ветер. Об этом нельзя забывать во время такого урагана. Если наблюдатель видит наклоненную воронку, непосредственная опасность ему не угрожает, но если воронка находится в вертикальном положении, он должен немедленно спасаться бегством в поисках укрытия.

    Теперь не составит труда доказать, как большое и очень тяжелое тело, например, груженый железнодорожный вагон или локомотив, могут быть подняты смерчем и перенесены на значительное расстояние. Американские локомотивы, самые большие в мире, могут иметь длину 66 и ширину 11? фута, составляя, таким образом, 760 квадратных футов в горизонтальной проекции. В момент удара о транспортное средство образуется статическое давление 138 фунтов на квадратный фут в добавление к атмосферному. Но, как было сказано выше, вследствие разрежения разность давлений в четыре дюйма ртутного столба (то есть два фунта на квадратный дюйм, или 228 фунтов на квадратный фут) сохраняется, доводя в итоге разницу в давлении между пространством под и над локомотивом до величины 288 + 138 = 426 фунтов на квадратный фут. Суммарный восходящий толчок, произведенный на подставленную под удар поверхность площадью 760 квадратных футов, равен, таким образом, 323 760 фунтам, что намного превышает вес полностью подготовленного к работе локомотива (он может весить около 280 000 фунтов).

    Обычно вес бывает значительно меньшим, и определенно можно увидеть, как такое транспортное средство мгновенно поднимается по спирали, двигаясь ускоренно, и отбрасывается по касательной на большое расстояние. Обыкновенный человек, возможно, удивится, что незначительного разрежения достаточно для такого колоссального проявления силы, но цифры безошибочно подтверждают это. Позволю себе добавить, что я допускал минимальные значения, которые, по всей вероятности, будут значительно превышены.

    Постоянный страх перед опасностью, исходящий от смерчей, и огромные потери, людские и материальные, которые они вызывают в некоторых местностях, настоятельно требуют изыскать какие-либо средства эффективной борьбы с ними, если не предотвращения их. Всякий раз, когда человек пытается вмешаться в порядок вещей, определенный непреложными законами, он обнаруживает, что его усилия крайне незначительны по сравнению с огромными перемещениями энергии в природе.

    Одним из величайших потенциально возможных достижений рода человеческого могло бы быть регулирование выпадения дождевых осадков. Солнце поднимает воды океана, а ветры переносят их в отдаленные области, где они пребывают в состоянии тонкой взвеси до тех пор, пока относительно слабый импульс не заставит их упасть на землю. Земной механизм действует почти так же, как устройство, высвобождающее огромную энергию посредством спускового крючка или детонирующего капсуля.

    Если бы человек мог выполнять эту сравнительно мелкую работу, он мог бы направлять живительный поток воды куда пожелает, создавать озера и реки и преобразовывать природу безводных регионов земного шара. Для решения этой задачи предлагается немало способов, но лишь один является продуктивным. Это молния, но определенного свойства.

    Более 35 лет тому назад я предпринял попытки воспроизведения явлений такого рода, и в 1899 году, действительно, добился успеха, применив генератор мощностью 2 000 лошадиных сил для получения разрядов 18 000 000 вольт при силе тока 1 200 ампер; разряды оказались такими мощными, что их было слышно на расстоянии 13 миль. Я также научился вызывать точно такие молнии, какие случаются в природе, и при этом решил все технические проблемы. Но обнаружил, что слабые проявления вызываются сравнительно небольшой энергией. Мы вполне в силах разрушать их или, по крайней мере, делать их безобидными, для этого не потребуется большого труда, так как метеорология становится точной наукой, а прогнозы погоды достоверными.

    С этой целью правительство могло бы организовать государственную службу, применяющую типовые бомбардировщики или более быстрые самолеты, поскольку потребность в этом реально существует. Смерч, вследствие своей небольшой энергии, чрезвычайной мобильности и неустойчивого равновесия между внешним и внутренним давлением, является очень уязвимым объектом и, без сомнения, может быть разрушен с помощью сравнительно небольших зарядов подходящего взрывчатого вещества. Быстро вращающуюся массу можно также без труда отклонить в любое желаемое направление, взорвав заряд даже на значительном расстоянии от нее. Решению задачи может также способствовать сравнительно небольшая поступательная скорость смерча, особенно с учетом современных средств быстрого оповещения.

    Я считаю, тем не менее, что эффективным способом борьбы со смерчами является применение тематических устройств. С тех пор как я продемонстрировал первый аппарат такого рода, Джон Хейз Хаммонд-младший, достигший большого умения в этом искусстве, провел широкомасштабные демонстрационные опыты, доказывая осуществимость дистанционного управления сложным механизмом. Не составит труда заготовить специально предназначенные для этого устройства, начиненные взрывными зарядами, сжиженным воздухом или другим газом, которые можно было бы приводить в действие автоматически или другим способом и которые могли бы создать внезапное давление или всасывание, разрушающие вихрь. Сами ракеты можно делать из материала, способного спонтанно воспламеняться. Уже есть немало специалистов для несения такой службы, можно найти и изготовителей, способных осуществить любые проекты.

    Возможно, следует сформировать правительственное ведомство во главе с таким человеком, как Джон Хейз Хаммонд-младший, и осуществлять систематическое изучение проблемы. Осуществление этого проекта откроет новые возможности для развития производства и роста занятости населения, кроме получения других выгод. Нет сомнения, что если инициировать такое предприятие и подключить к работе большие интеллектуальные силы, будут найдены эффективные методы и средства предотвращения огромных людских и материальных потерь.

    Примечание А: При тепловом эквиваленте смеси 4 100 британских тепловых единиц будет достигнуто постоянное давление двенадцать тысяч атмосфер, при этом расчетная температура продуктов сгорания может равняться примерно 8 000° F. Тогда максимально возможная скорость может быть достигнута при условии, что газы будут выбрасываться в атмосферу через идеально развернутое сопло. В таком случае начальная термодинамическая температура будет равна Т = 8 460° F; следовательно, термодинамическая температура газов при их полном расширении составит



    Соответственно, принимая удельную теплоемкость за постоянную величину Cv = 0,33, получим энергию W= 7 877 ? 0,33 = 2 600 британских тепловых единиц и максимальную расчетную скорость



    футов в секунду.

    Примечание В: Пусть длина стебля равна одному футу, диаметр — 1/8 дюйма, а его удельный вес составляет 0,4 удельного веса воды. Тогда в сечении он будет иметь 1/80 квадратного дюйма, или 1/144?80 = 1/11520 квадратного фута, и, следовательно, объем, равный 1/11520 кубического фута. Поскольку один кубический фут воды весит 62,45 фунта, вес эквивалентного объема соломы составит 0,4 ? 62,45 = 25 фунтов, тогда вес одной соломины будет равен 25/11520 фунта, а его масса M = 25/32?11520. = В результате кинетическая энергия будет равна ?MV? = 25?22500/64?11520 футо-фунтов и будет справедливым условие 25?22500 / 64?11520 = r?1/24, из чего следует

    r = 24?22500?25 / 64?11520 = 18,31 фунта.

    Это среднее значение силы или производимого давления, максимальное же значение равно

    2 ? 18,31 = 36,62 фунта.

    Так как это давление действует на площадь 1/80 квадратного дюйма, сила, действующая на квадратный дюйм, составит

    F = 36,62 ? 80 = 2 929,5 фунта.

    Примечание С: Объем равен 0,2618 Н (D? + d? + dD) = 0,2618 ? 1200 (1200? + 300? + 1200 ? 300) = 0,2 618 ? 1 200 (1200? + 1200 ? 300) = 593 760 000 кубических футов, вес около 593 760 000 ? 8/100 = 47 500 000 и масса

    M = 47 500 000 / 32 = 1 484 400 фунтов.

    Если всё это будет вращаться с максимальной скоростью V = 235 футов в секунду, кинетическая энергия будет равна

    ?MV? = 742 200 ? 55 225 = 40 988 000 000 футо-фунтов, эквивалентных

    40 988 000 000 / 778 = 52 700 000 британских тепловых единиц.

    Примечание D: Если воздушная масса вращается внутри оболочки с входным и выходным отверстиями по принципу дисков или других устройств, то пусть периферийная скорость будет V футов в секунду, разность давлений составит около V?, тогда

    Vw? = V??0.08 / 64 = V? / 800 фунтов на квадратный фут образуется в пространстве между всасывающим отверстием и отверстием истечения. Если V = 235 футов в секунду, то V? / 800 = 55 225 / 800 = 69 фунтов на квадратный фут, или 69/144 = 0,48 фунта на квадратный дюйм, что соответствует разрежению чуть меньше одного дюйма.

    «Everyday Science and Mechanics», декабрь, 1933 г.

    59

    Энергия будущего

    Постоянный технический прогресс создает условия для объединения человечества в цивилизованное сообщество, что позволяет экономить трудозатраты, обеспечивать комфортные условия и безопасность существования, а также поднять взаимоотношения людей на более высокий уровень культуры и развития. В свете этих достижений поиск экономических источников энергии отвечает самым неотложным и жизненно важным потребностям. Если бы у нас не было искусственного света, телеграфа, телефона, наше существование продолжалось бы, хотя и в стесненных условиях, полных неудобств, но без энергии мы, несомненно, погибли бы. Вся энергия на нашей планете исходит от Солнца. Человек никогда не мог обходиться без его тепловых и световых лучей, их исчезновение означало бы временное прерывание его деятельности или даже смерть. Его благоговейный страх и чувство признательности породили религиозные верования, которые дошли до нас и, трансформировавшись на протяжении бесчисленных поколений, смоделировали наши судьбы. Однако нашей высшей целью является полное овладение силами природы. Продолжая потреблять энергию из одного и того же источника, мы в своем стремлении поставить его себе на службу добились таких результатов, что наша жизнь стала в высшей степени ненатуральной. Миллионы людей никогда не видят солнца, а ведь наша зависимость от него абсолютна. Средний человек совершенно не представляет себе, какими беспомощными мы окажемся без энергии и какую катастрофу может вызвать сколько-нибудь серьезная приостановка в ее подаче. Если бы это было известно широким массам и каждый ясно осознавал ужасные последствия, которые могут произойти, то такое явление, как забастовка на железной дороге, исчезло бы само по себе.

    Те немногие, кто заботится о будущем, уже давно перестали рассматривать энергию только в качестве средства обеспечения личной безопасности и комфорта; они придают ей общенациональное, интернациональное и гуманистическое значение. Наряду с этим постепенно находит признание идея, что ресурсы, которыми мы располагаем, принадлежат грядущим поколениям в той же степени, что и нам, и инженерная и изобретательская мысль обращается к поискам лучших средств, способных покончить с варварским расточительством, которое продолжается до сих пор и которое в конечном счете должно привести к истощению природных запасов. Этим объясняется, почему всякого рода сенсационные сообщения относительно новых источников энергии порождают такой повышенный интерес и находят не заставляющее себя ждать одобрение. Но найдется не более одного из тысячи, даже среди профессионалов, кто способен отделить зерна от плевел.

    Атомная энергия

    В качестве примера я могу упомянуть освоение атомной энергии, которое занимает сейчас главное место в общественном сознании. Обсуждение этого предмета носит большей частью тот же качественный характер, что и разговоры об общении с духами умерших или подобном вздоре, которые возникают от нездорового стремления к самоувековечиванию и противоречат всем естественным законам, здравому смыслу и опыту. Очевидная истина такова. С давних пор философы пытаются выяснить строение материи, и это привело их к выводу, что микромир (микрокосм) и макромир (макрокосм) очень похожи в некоторых отношениях. Солнца, звезды и луны на небесах имеют свою копию в молекулах, атомах и электронах. Соответственно, все тела состоят из независимых частиц различных размеров, вращающихся друг вокруг друга с чудовищными скоростями и содержащих кинетическую энергию, количество которой, как доказывают последние исследования в области физики, беспредельно. Если бы можно было уловить и преобразовать ее, мы могли бы иметь энергию в неограниченных количествах в любом месте на нашей планете. Такая возможность уже давно открылась лучшим умам в изобретательской среде. Идея не нова, но наука сделала ее более определенной и точной. Я и сам посвятил много размышлений и экспериментов реализации этой мечты с момента открытия рентгеновских лучей двадцать четыре года тому назад. Первый внушающий надежды результат был достигнут в 1897 году, когда мне удалось осуществить выброс первичного вещества на расстояние, далее, очевидно, не разложимого, и уловить некоторое количество его энергии. Это вошло отдельной темой в мое выступление перед Нью-Йоркской академией наук в том же году, о чем, однако, лишь в некоторых технических изданиях появились скудные сообщения: недостаток времени не позволил мне подготовить доклад для публикации. Впоследствии я создал прибор, который, пожалуй, и сегодня считался бы уникальным и в высшей степени приспособленным для осуществления первого шага, а именно, для выделения атомной энергии. Но несмотря на то, что мой способ был перспективным, а один из талантливейших физиков профессор Бушерер присоединился к моему мнению, эти исследования послужили лишь доказательством того, что в этом процессе количество затрачиваемой энергии превышает количество получаемой. Я же в самом деле удовлетворен тем, что проблема во многом имеет ту же природу, что и процесс, происходящий при разделении небесных светил.

    Возможные препятствия на пути освоения энергии атома

    Чтобы получить точное представление, мы можем рассмотреть в качестве примера Землю и Луну, вращающуюся вокруг нее со скоростью 0,291 мили в секунду. Кинетическая энергия орбитального движения нашей планеты равна половине произведения ее массы на квадрат ее скорости. Давайте теперь зададимся вопросом, какая энергия потребуется, чтобы отделить Луну от Земли. Это можно без труда выяснить, обратившись к расчетам. Нам лишь потребуется допустить, что спутник падает из глубин космоса по направлению к Земле, находясь на расстоянии 238 800 миль, приобретая определенную скорость, и тогда энергия, необходимая для ее отделения от Земли, была бы равна половине произведения ее массы на квадрат ее скорости. Я определяю последнюю примерно равной 0,9 мили в секунду, из чего следует, что энергия движения Луны, которая может выделиться, составит лишь немногим более 10 % от той, что должна быть затрачена для достижения результата. Очевидно, однако, что только часть выделившейся энергии может быть обратимой. Если кинетическая энергия атомов сначала переходит в тепловую, что представляется неизбежным, выделится едва ли более одной трети от максимально возможной, а необходимая внешняя теплота не должна превысить, скажем, одну шестую. Таким образом, если бы атомная энергия выделялась с интенсивностью шесть тысяч лошадиных сил, то две тысячи подвергались бы конверсии, одна тысяча ушла бы на осуществление процесса и такое же количество на полезные цели. В случае с Луной эти условия могли бы быть достигнуты, если бы она вращалась вокруг Земли с ее теперешней орбитальной скоростью на расстоянии 13 755 000 миль, которое, соответственно, намного больше, чем какое бы то ни было отдаление элементов атомной структуры. Отсюда вытекает логическое умозаключение, что если и возможно высвободить энергию, это не принесет выгоды. Боюсь, нам противостоит нечто непреодолимое в данном предприятии, а если это так, перспективы его практического осуществления ничтожны.

    Лаплас пришел к заключению, что Солнечная система неизменна, то есть непреходяща, и его аргументация, очевидно, применима к молекулярному миру, так как движение повинуется одним и тем же законам.

    Но, что вполне естественно, будет задан вопрос: а как насчет феномена радия? Здесь мы имеем пример фактического распада материи, сопровождающегося выделением огромного количества энергии. Я высказался по этому поводу в 1896 году, задолго до того, как эти явления были тщательно отслежены и изучены. По моему мнению, энергия, определяющая процесс распада, присуща пространственному эфиру, и в таком контексте стоящая перед нами проблема выглядит более рациональной в плане овладения энергией окружающей среды. Это представляется мне более перспективным направлением исследований, следуя которому можно добиться реальных успехов.

    Другие источники энергии

    Не принимая пока во внимание эту возможность и анализируя имеющиеся в нашем распоряжении источники энергии, кроме горючего, мы должны назвать световые и тепловые излучения Солнца, ветер, приливы и океанские волны, атмосферное электричество, земную теплоту и водопады. Нескольких констатаций будет достаточно, чтобы доказать, что энергия падающей воды является нашим самым ценным достоянием, тем более что ее полезность может быть стократно увеличена.

    Теплота солнечных лучей, падающих на Землю, представляет собой огромное количество энергии. Тщательные замеры показывают, что она составляет около 83 футо-фунтов на квадратный фут; это должно означать, что приблизительно 6? квадратных фута, подвергаемых воздействию отвесно падающих лучей, могут получить энергию мощностью в одну лошадиную силу. Поскольку Земля имеет сферическую форму, а угол падения может быть различным в разных местах, среднее количество энергии составит 20? футо-фунта на каждый квадратный фут освещаемой поверхности, или более 1 000 000 лошадиных сил на квадратную милю. Если бы можно было с пользой трансформировать значительное ее количество, мы не нуждались бы в угле и нефти. Такой способ получения энергии не нов, и он всегда был особенно привлекателен для неосведомленных людей. Неопровержимые факты говорят о следующем. Если мы примем в расчет текущие колебания, суточные, случайные и сезонные изменения интенсивности лучей, энергопоступление снизится примерно до 100 000 лошадиных сил на квадратную милю, из которых 10 000 лошадиных сил можно было бы утилизировать в турбинах. Само по себе это было бы неплохо, если бы не сооружение огромных аккумулирующих станций с такими большими и дорогостоящими приборами, что проект такого рода выходит за рамки рентабельного предприятия. Это правда, что развитие современной жизни влечет за собой постоянный рост цен на потребительские товары, и по этой причине постоянно возрастает значение ограниченных и менее доходных источников. С течением времени мы, возможно, сочтем использование солнечных лучей менее спорным, главным образом, при условии, что будут значительно усовершенствованы методы и приборы, до сих пор применяемые.

    Ветер поставляет энергию в количестве, с которым нельзя не считаться, и используется человеком с незапамятных времен. Во многих странах применение ветряных мельниц для освещения и аккумулирования энергии довольно широко распространено, но неритмичный характер поступления энергии делает этот источник неподходящим для применения на промышленных предприятиях любой величины.

    Что касается приливов, за исключением особых случаев, их даже нельзя всерьез рассматривать. Обычно их мощность составляет около одной лошадиной силы на акр, а наличие интервалов неизбежно требует аккумулирования. Это обстоятельство и затрудненность улавливания энергии на обширных пространствах исключают возможность получения энергии таким способом, и не может вступать ни в какое соперничество с машиной, каким бы дорогим ни было горючее.

    Энергия океанских волн велика, часто достигает нескольких сотен лошадиных сил на фут ширины. Тысячи изобретателей пытались решить проблему и потерпели неудачу. Существуют четыре различных способа заставить волновые двигатели работать, но какой бы способ ни был выбран, он приведет к удручающим результатам. Извлекается лишь незначительное количество энергии. Хуже всего то, что этот источник энергии непредсказуем и ненадежен.

    В проявлениях электрических сил природы часто участвуют огромные количества энергии. Занимаясь исследованиями феномена земного электричества в Колорадо, я наблюдал 12 000 разрядов молний в течение двух часов, и некоторые из них, по моим расчетам, несли в себе достаточно энергии, чтобы поставлять 5 000 лошадиных сил в течение года. Допустим, что теоретически энергия каждого разряда была эквивалентна 2 000 лошадиных сил в год и ста разрядам [молнии] в минуту, тогда средняя номинальная мощность, пока длилось это явление, составляла около 263 миллиардов лошадиных сил, однако это ошеломляющее число, как бы то ни было, практически не имеет значения. Мои колебательные преобразователи дают возможность извлекать энергию из молнии, но ее экономически выгодное аккумулирование почти неосуществимо по причине крайней внезапности и неистовости проявления.

    Вполне осуществимым представляется использование в широком масштабе земной теплоты, и велика вероятность того, что в недалеком времени будут предприниматься попытки такого рода. Я подробно останавливался на этом вопросе в статье, опубликованной в июньском номере «Century Magazine» за 1900 год. Известно, что внутренние области земного шара раскалены, с каждым футом вглубь температура повышается на 1 °C. Если бы удалось добиться успеха в преодолении технических трудностей, сопровождающих бурение скважин на большую глубину, энергия пара для промышленного потребления в любом желаемом количестве могла бы стать доступной в любой стране независимо от местонахождения. Хотя вещества, образующие земную кору, обладают лишь одной шестнадцатой электропроводности стали, применяемой в котлах, это препятствие можно почти полностью устранить, а приток тепловой энергии в котел был бы достаточным для эффективного парообразования под давлением, которое бы попросту зависело от глубины скважины. Преобразование этой энергии в турбинах могло бы быть вполне экономичным, и, по приблизительным расчетам, это дало бы одну л.с. мощности на каждые десять квадратных футов поверхности скважины. При условии, что ее диаметр равен 50 футам, можно было бы получать до 100 000 лошадиных сил на милю. Такой проект был недавно поддержан сэром Чарльзом Парсоном, внесшим большой вклад в доработку газотурбинного двигателя. Причинная обусловленность его широкомасштабного внедрения, сопутствующие ему технические трудности и неопределенность в оценке затрат будут сдерживать капиталовложения. Эти препятствия, однако, можно устранить тщательной проработкой всех деталей этого предприятия. Но какой бы проект в любом из названных направлений поиска ни был в будущем доведен до практического осуществления, нашей главной опорой предназначено быть энергии водопадов.

    Энергия воды как идеальное средство использования энергии Солнца

    В большинстве процессов преобразования мы сталкиваемся с ужасающими потерями, а возможности усовершенствования имеют определенные ограничения экономического характера. Никакая изобретательность никогда не сможет обойти законы природы, налагающие эти ограничения. Энергия воды в этом отношении представляет собой замечательное исключение. В гидроэнергетике рабочее колесо турбины может иметь производительность 85, а динамо-машина — 98 процентов, так что суммарный коэффициент полезного действия превышает 83 процента, то есть мы имеем возможность употребить с пользой почти всю энергию, посылаемую нам Солнцем. Но дело не только в этом. Прост сам механизм, почти ничего не разрушающий и не требующий практически никакого технического обслуживания. К сожалению, этот источник поступления энергии не адекватен в удовлетворении всех наших потребностей, несмотря на то что теоретически энергия падающей воды, так сказать, неограниченна. Допустим, что дождевые облака находятся на средней высоте 15 000 футов, и годовое количество осадков составляет 33 дюйма, тогда энергия над всей территорией Соединённых Штатов достигнет мощности двенадцать миллиардов лошадиных сил, но значительная часть потенциальной энергии преобразуется в тепловую в результате трения дождевых капель о воздух, так что фактически механическая энергия будет гораздо меньше. Большая часть воды падает с высоты около 2 000 футов, и ее энергетический эквивалент превышает полмиллиарда лошадиных сил, но мы не можем принять напор воды с высоты более 100 футов, так что при условии укрощения всех водопадов в США может получиться не более 80 миллионов лошадиных сил. На сегодняшний день в нашей стране мы освоим приблизительно 8 миллионов лошадиных сил, что сберегает почти треть всего добытого угля. Широкомасштабное сооружение плотин даст возможность значительно увеличить получаемую энергию, вероятно, до нескольких сотен миллионов лошадиных сил. Но это не будет пределом.

    Мы пребываем накануне свершений, которые будут иметь колоссальное значение для будущего прогресса рода людского. Одним из них является управление выпадением осадков. Вода испаряется и поднимается вопреки силе тяжести. Воздушные потоки несут водяные пары, которые пребывают на высоте в состоянии тонкой суспензии. Когда равновесие нарушается, вода падает на землю и стекает обратно в океан. Таким образом, Солнце всегда поддерживает этот животворный поток. Энергия, необходимая для того, чтобы вызвать выпадение дождя, по сравнению с его потенциальной энергией, подобна искре, вызывающей взрыв заряда динамита. Если бы эта часть природного процесса сознательно регулировалась человеком, он мог бы преобразить весь земной шар. Для достижения этой цели предлагается немало проектов, ни один из которых, по моим сведениям, не дает ни малейшего шанса на успех. Но я убедился, что с соответствующим оборудованием это чудо осуществимо. Тогда в нашем распоряжении будет находиться любое количество энергии; мы сможем превратить пустыни в плодородные земли и создавать озера и реки, не прилагая со своей стороны никаких усилий. Однако наш триумф не будет полным, если энергия не сможет передаваться на неограниченные расстояния. Для нас это тоже теперь в пределах досягаемости. С помощью моего беспроводного метода возможно осуществление передачи электрической энергии на расстояние 12 000 миль при потерях, не превышающих 5 %. Невозможно представить себе какие-либо иные передовые проекты, которые были бы более насущными в настоящее время и более благодатными для дальнейшего развития человечества.

    Статья без библиографических данных, найденная в архиве Музея Николы Теслы. Вероятная дата написания 1919 г.


    Примечания:



    1

    И.-В. Гёте. «Фауст».



    10

    Неразборчивое слово в рукописи.



    11

    Обратитесь к октябрьскому номеру этого журнала за 1918 год, где дано подробное, снабженное иллюстрациями описание нового образца молниеотвода Теслы без заостренного вывода.









    Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное

    Все материалы представлены для ознакомления и принадлежат их авторам.