Онлайн библиотека PLAM.RU




22. Проверка гипотезы о значимости коэффициентов модели парной регрессии

Проверкой статистической гипотезы о значимости отдельных параметров модели называется проверка предположения о том, что данные параметры значимо отличаются от нуля.

Необходимость проверки гипотез о значимости параметров модели вызвана тем, что в дальнейшем построенную модель будут использовать для дальнейших экономических расчётов.

Предположим, что по данным выборочной совокупности была построена линейная модель парной регрессии. Задача состоит в проверке значимости оценок неизвестных коэффициентов модели, полученных методом наименьших квадратов.

Основная гипотеза состоит в предположении о незначимости коэффициентов регрессии, т. е.

Н0:?0=0, или Н0:?1=0.

Обратная или конкурирующая гипотеза состоит в предположении о значимости коэффициентов регрессии, т.е.

Н1:?0?0, или Н1:?1?0.

Данные гипотезы проверяются с помощью t-критерия Стьюдента.

Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают со значением t-критерия, которое определяется по таблице распределения Стьюдента и называется критическим.

Критическое значение t-критерия зависит от уровня значимости и числа степеней свободы.

Уровнем значимостиа называется величина, которая рассчитывается по формуле:

а=1-?,

где ? – это доверительная вероятность попадания оцениваемого параметра в доверительный интервал. Значение доверительной вероятности должно быть близким к единице, например, 0.95, 0.99. Следовательно, уровень значимости а можно определить как вероятность того, что оцениваемый параметр не попадёт в доверительный интервал.

Числом степеней свободы называется показатель, который рассчитывается как разность между объёмом выборочной совокупности n и числом оцениваемых параметров по данной выборке h. Для линейной модели парной регрессии число степеней свободы рассчитывается как (n-2), потому что по данным выборочной совокупности оцениваются только два параметра – ?0 и ?1.

Таким образом, критическое значение t-критерия Стьюдента определяется как tкрит(а;n-h).

При проверке основной гипотезы вида Н0:?1=0 наблюдаемое значение t-критерия Стьюдента рассчитывается по формуле:

где – оценка параметра модели регрессии ?1;

?(?1) – величина стандартной ошибки параметра модели регрессии ?1.

Показатель стандартной ошибки параметра модели регрессии ?1 для линейной модели парной регрессии рассчитывается по формуле:

Числитель стандартной ошибки может быть рассчитан через парный коэффициент детерминации следующим образом:

где G2(y) – общая дисперсия зависимой переменной;

r2yx – парный коэффициент детерминации между зависимой и независимой переменными.

При проверке основной гипотезы ?0=0 наблюдаемое значение t-критерия Стьюдента рассчитывается по формуле:

где

– оценка параметра модели регрессии ?0;

?(?0) – величина стандартной ошибки параметра модели регрессии ?0.

Показатель стандартной ошибки параметра ?0 модели регрессии для линейной модели парной регрессии рассчитывается по формуле:

При проверке основных гипотез возможны следующие ситуации:

Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|›tкрит, то с вероятностью (1-а) или ? основная гипотеза о незначимости параметров модели регрессии отвергается.

Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|?tкрит, то с вероятностью а или (1-?) основная гипотеза о незначимости параметров модели регрессии принимается.









Главная | Контакты | Нашёл ошибку | Прислать материал | Добавить в избранное

Все материалы представлены для ознакомления и принадлежат их авторам.